Journal article 684 views 99 downloads
New multiplicity results for critical p-Laplacian problems
Journal of Functional Analysis, Volume: 283, Issue: 4, Start page: 109536
Swansea University Author: Carlo Mercuri
-
PDF | Version of Record
© 2022 The Authors. This is an open access article under the CC BY license
Download (448.72KB)
DOI (Published version): 10.1016/j.jfa.2022.109536
Abstract
We prove new multiplicity results for the Brézis-Nirenberg problem for the p-Laplacian. Our proofs are based on a new abstract critical point theorem involving the Z2-cohomological index that requires less compactness than the (PS) condition.
Published in: | Journal of Functional Analysis |
---|---|
ISSN: | 0022-1236 |
Published: |
Elsevier BV
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa59948 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2022-05-04T08:16:57Z |
---|---|
last_indexed |
2023-01-11T14:41:34Z |
id |
cronfa59948 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-09-06T11:15:09.9462722</datestamp><bib-version>v2</bib-version><id>59948</id><entry>2022-05-03</entry><title>New multiplicity results for critical p-Laplacian problems</title><swanseaauthors><author><sid>46bf09624160610d6d6cf435996a5913</sid><firstname>Carlo</firstname><surname>Mercuri</surname><name>Carlo Mercuri</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-05-03</date><deptcode>FGSEN</deptcode><abstract>We prove new multiplicity results for the Brézis-Nirenberg problem for the p-Laplacian. Our proofs are based on a new abstract critical point theorem involving the Z2-cohomological index that requires less compactness than the (PS) condition.</abstract><type>Journal Article</type><journal>Journal of Functional Analysis</journal><volume>283</volume><journalNumber>4</journalNumber><paginationStart>109536</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0022-1236</issnPrint><issnElectronic/><keywords>Critical p-Laplacian problems, Multiplicity results, Abstract critical point theorems, Z2-cohomological index</keywords><publishedDay>15</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-08-15</publishedDate><doi>10.1016/j.jfa.2022.109536</doi><url/><notes/><college>COLLEGE NANME</college><department>Science and Engineering - Faculty</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>FGSEN</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders/><projectreference/><lastEdited>2022-09-06T11:15:09.9462722</lastEdited><Created>2022-05-03T14:42:48.2147657</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Carlo</firstname><surname>Mercuri</surname><order>1</order></author><author><firstname>Kanishka</firstname><surname>Perera</surname><orcid>0000-0001-6168-247x</orcid><order>2</order></author></authors><documents><document><filename>59948__24193__6b5f76e91a8f40a6a36b67a8aac5b9be.pdf</filename><originalFilename>59948_VoR.pdf</originalFilename><uploaded>2022-05-26T15:49:52.4329438</uploaded><type>Output</type><contentLength>459494</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2022 The Authors. This is an open access article under the CC BY license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-09-06T11:15:09.9462722 v2 59948 2022-05-03 New multiplicity results for critical p-Laplacian problems 46bf09624160610d6d6cf435996a5913 Carlo Mercuri Carlo Mercuri true false 2022-05-03 FGSEN We prove new multiplicity results for the Brézis-Nirenberg problem for the p-Laplacian. Our proofs are based on a new abstract critical point theorem involving the Z2-cohomological index that requires less compactness than the (PS) condition. Journal Article Journal of Functional Analysis 283 4 109536 Elsevier BV 0022-1236 Critical p-Laplacian problems, Multiplicity results, Abstract critical point theorems, Z2-cohomological index 15 8 2022 2022-08-15 10.1016/j.jfa.2022.109536 COLLEGE NANME Science and Engineering - Faculty COLLEGE CODE FGSEN Swansea University SU Library paid the OA fee (TA Institutional Deal) 2022-09-06T11:15:09.9462722 2022-05-03T14:42:48.2147657 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Carlo Mercuri 1 Kanishka Perera 0000-0001-6168-247x 2 59948__24193__6b5f76e91a8f40a6a36b67a8aac5b9be.pdf 59948_VoR.pdf 2022-05-26T15:49:52.4329438 Output 459494 application/pdf Version of Record true © 2022 The Authors. This is an open access article under the CC BY license true eng http://creativecommons.org/licenses/by/4.0/ |
title |
New multiplicity results for critical p-Laplacian problems |
spellingShingle |
New multiplicity results for critical p-Laplacian problems Carlo Mercuri |
title_short |
New multiplicity results for critical p-Laplacian problems |
title_full |
New multiplicity results for critical p-Laplacian problems |
title_fullStr |
New multiplicity results for critical p-Laplacian problems |
title_full_unstemmed |
New multiplicity results for critical p-Laplacian problems |
title_sort |
New multiplicity results for critical p-Laplacian problems |
author_id_str_mv |
46bf09624160610d6d6cf435996a5913 |
author_id_fullname_str_mv |
46bf09624160610d6d6cf435996a5913_***_Carlo Mercuri |
author |
Carlo Mercuri |
author2 |
Carlo Mercuri Kanishka Perera |
format |
Journal article |
container_title |
Journal of Functional Analysis |
container_volume |
283 |
container_issue |
4 |
container_start_page |
109536 |
publishDate |
2022 |
institution |
Swansea University |
issn |
0022-1236 |
doi_str_mv |
10.1016/j.jfa.2022.109536 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
We prove new multiplicity results for the Brézis-Nirenberg problem for the p-Laplacian. Our proofs are based on a new abstract critical point theorem involving the Z2-cohomological index that requires less compactness than the (PS) condition. |
published_date |
2022-08-15T04:17:38Z |
_version_ |
1763754176724074496 |
score |
11.035874 |