Conference Paper/Proceeding/Abstract 629 views 45 downloads
On Ranking Function Synthesis and Termination for Polynomial Programs
31st International Conference on Concurrency Theory (CONCUR 2020), Volume: 171
Swansea University Author: Eike Neumann
-
PDF | Version of Record
© Eike Neumann, Joël Ouaknine, and James Worrell; licensed under Creative Commons License CC-BY
Download (436.24KB)
DOI (Published version): 10.4230/LIPIcs.CONCUR.2020.15
Abstract
We consider the problem of synthesising polynomial ranking functions for single-path loops over the reals with continuous semi-algebraic update function and compact semi-algebraic guard set. We show that a loop of this form has a polynomial ranking function if and only if it terminates. We further s...
Published in: | 31st International Conference on Concurrency Theory (CONCUR 2020) |
---|---|
ISBN: | 978-3-95977-160-3 |
ISSN: | 1868-8969 |
Published: |
Schloss Dagstuhl -- Leibniz-Zentrum für Informatik
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa60141 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2022-06-07T12:31:22Z |
---|---|
last_indexed |
2023-01-11T14:41:54Z |
id |
cronfa60141 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-10-31T14:32:07.6523656</datestamp><bib-version>v2</bib-version><id>60141</id><entry>2022-06-07</entry><title>On Ranking Function Synthesis and Termination for Polynomial Programs</title><swanseaauthors><author><sid>1bf535eaa8d6fcdfbd464a511c1c0c78</sid><firstname>Eike</firstname><surname>Neumann</surname><name>Eike Neumann</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-06-07</date><deptcode>SCS</deptcode><abstract>We consider the problem of synthesising polynomial ranking functions for single-path loops over the reals with continuous semi-algebraic update function and compact semi-algebraic guard set. We show that a loop of this form has a polynomial ranking function if and only if it terminates. We further show that termination is decidable for such loops in the special case where the update function is affine.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>31st International Conference on Concurrency Theory (CONCUR 2020)</journal><volume>171</volume><journalNumber/><paginationStart/><paginationEnd/><publisher>Schloss Dagstuhl -- Leibniz-Zentrum für Informatik</publisher><placeOfPublication/><isbnPrint/><isbnElectronic>978-3-95977-160-3</isbnElectronic><issnPrint/><issnElectronic>1868-8969</issnElectronic><keywords>Semi-algebraic sets, Polynomial ranking functions, Polynomial programs</keywords><publishedDay>26</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-08-26</publishedDate><doi>10.4230/LIPIcs.CONCUR.2020.15</doi><url/><notes/><college>COLLEGE NANME</college><department>Computer Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SCS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>Joël Ouaknine: Supported by ERC grant AVS-ISS (648701) and DFG grant 389792660 as part of TRR 248 (see https://perspicuous-computing.science). James Worrell: Supported by EPSRC Fellowship EP/N008197/1.</funders><projectreference/><lastEdited>2022-10-31T14:32:07.6523656</lastEdited><Created>2022-06-07T13:23:34.5477947</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Eike</firstname><surname>Neumann</surname><order>1</order></author><author><firstname>Joël</firstname><surname>Ouaknine</surname><order>2</order></author><author><firstname>James</firstname><surname>Worrell</surname><order>3</order></author></authors><documents><document><filename>60141__24405__0a0ed5bc2b3e4072adc017829d382c95.pdf</filename><originalFilename>60141.pdf</originalFilename><uploaded>2022-06-28T14:36:30.7751825</uploaded><type>Output</type><contentLength>446707</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© Eike Neumann, Joël Ouaknine, and James Worrell; licensed under Creative Commons License CC-BY</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/3.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-10-31T14:32:07.6523656 v2 60141 2022-06-07 On Ranking Function Synthesis and Termination for Polynomial Programs 1bf535eaa8d6fcdfbd464a511c1c0c78 Eike Neumann Eike Neumann true false 2022-06-07 SCS We consider the problem of synthesising polynomial ranking functions for single-path loops over the reals with continuous semi-algebraic update function and compact semi-algebraic guard set. We show that a loop of this form has a polynomial ranking function if and only if it terminates. We further show that termination is decidable for such loops in the special case where the update function is affine. Conference Paper/Proceeding/Abstract 31st International Conference on Concurrency Theory (CONCUR 2020) 171 Schloss Dagstuhl -- Leibniz-Zentrum für Informatik 978-3-95977-160-3 1868-8969 Semi-algebraic sets, Polynomial ranking functions, Polynomial programs 26 8 2020 2020-08-26 10.4230/LIPIcs.CONCUR.2020.15 COLLEGE NANME Computer Science COLLEGE CODE SCS Swansea University Joël Ouaknine: Supported by ERC grant AVS-ISS (648701) and DFG grant 389792660 as part of TRR 248 (see https://perspicuous-computing.science). James Worrell: Supported by EPSRC Fellowship EP/N008197/1. 2022-10-31T14:32:07.6523656 2022-06-07T13:23:34.5477947 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Eike Neumann 1 Joël Ouaknine 2 James Worrell 3 60141__24405__0a0ed5bc2b3e4072adc017829d382c95.pdf 60141.pdf 2022-06-28T14:36:30.7751825 Output 446707 application/pdf Version of Record true © Eike Neumann, Joël Ouaknine, and James Worrell; licensed under Creative Commons License CC-BY true eng https://creativecommons.org/licenses/by/3.0/ |
title |
On Ranking Function Synthesis and Termination for Polynomial Programs |
spellingShingle |
On Ranking Function Synthesis and Termination for Polynomial Programs Eike Neumann |
title_short |
On Ranking Function Synthesis and Termination for Polynomial Programs |
title_full |
On Ranking Function Synthesis and Termination for Polynomial Programs |
title_fullStr |
On Ranking Function Synthesis and Termination for Polynomial Programs |
title_full_unstemmed |
On Ranking Function Synthesis and Termination for Polynomial Programs |
title_sort |
On Ranking Function Synthesis and Termination for Polynomial Programs |
author_id_str_mv |
1bf535eaa8d6fcdfbd464a511c1c0c78 |
author_id_fullname_str_mv |
1bf535eaa8d6fcdfbd464a511c1c0c78_***_Eike Neumann |
author |
Eike Neumann |
author2 |
Eike Neumann Joël Ouaknine James Worrell |
format |
Conference Paper/Proceeding/Abstract |
container_title |
31st International Conference on Concurrency Theory (CONCUR 2020) |
container_volume |
171 |
publishDate |
2020 |
institution |
Swansea University |
isbn |
978-3-95977-160-3 |
issn |
1868-8969 |
doi_str_mv |
10.4230/LIPIcs.CONCUR.2020.15 |
publisher |
Schloss Dagstuhl -- Leibniz-Zentrum für Informatik |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
description |
We consider the problem of synthesising polynomial ranking functions for single-path loops over the reals with continuous semi-algebraic update function and compact semi-algebraic guard set. We show that a loop of this form has a polynomial ranking function if and only if it terminates. We further show that termination is decidable for such loops in the special case where the update function is affine. |
published_date |
2020-08-26T04:18:00Z |
_version_ |
1763754199505436672 |
score |
11.035634 |