No Cover Image

Journal article 304 views

On the number of stable positive solutions of weakly nonlinear elliptic equations when the diffusion is small

Norman Dancer

Topological Methods in Nonlinear Analysis, Volume: 59, Issue: 2A, Pages: 1 - 8

Swansea University Author: Norman Dancer

Full text not available from this repository: check for access using links below.

Check full text

DOI (Published version): 10.12775/tmna.2020.025

Published in: Topological Methods in Nonlinear Analysis
ISSN: 1230-3429
Published: Uniwersytet Mikolaja Kopernika/Nicolaus Copernicus University 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa60576
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2022-08-18T14:13:39Z
last_indexed 2023-01-13T19:20:48Z
id cronfa60576
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-08-18T15:14:19.9735124</datestamp><bib-version>v2</bib-version><id>60576</id><entry>2022-07-21</entry><title>On the number of stable positive solutions of weakly nonlinear elliptic equations when the diffusion is small</title><swanseaauthors><author><sid>bae63d44230e78d316baedd6c0112f45</sid><firstname>Norman</firstname><surname>Dancer</surname><name>Norman Dancer</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-07-21</date><deptcode>SMA</deptcode><abstract/><type>Journal Article</type><journal>Topological Methods in Nonlinear Analysis</journal><volume>59</volume><journalNumber>2A</journalNumber><paginationStart>1</paginationStart><paginationEnd>8</paginationEnd><publisher>Uniwersytet Mikolaja Kopernika/Nicolaus Copernicus University</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1230-3429</issnPrint><issnElectronic/><keywords>Small diffusion, stability of solutions to elliptic equations, blow-up</keywords><publishedDay>25</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-05-25</publishedDate><doi>10.12775/tmna.2020.025</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SMA</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-08-18T15:14:19.9735124</lastEdited><Created>2022-07-21T13:34:46.3217521</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Norman</firstname><surname>Dancer</surname><order>1</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2022-08-18T15:14:19.9735124 v2 60576 2022-07-21 On the number of stable positive solutions of weakly nonlinear elliptic equations when the diffusion is small bae63d44230e78d316baedd6c0112f45 Norman Dancer Norman Dancer true false 2022-07-21 SMA Journal Article Topological Methods in Nonlinear Analysis 59 2A 1 8 Uniwersytet Mikolaja Kopernika/Nicolaus Copernicus University 1230-3429 Small diffusion, stability of solutions to elliptic equations, blow-up 25 5 2021 2021-05-25 10.12775/tmna.2020.025 COLLEGE NANME Mathematics COLLEGE CODE SMA Swansea University 2022-08-18T15:14:19.9735124 2022-07-21T13:34:46.3217521 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Norman Dancer 1
title On the number of stable positive solutions of weakly nonlinear elliptic equations when the diffusion is small
spellingShingle On the number of stable positive solutions of weakly nonlinear elliptic equations when the diffusion is small
Norman Dancer
title_short On the number of stable positive solutions of weakly nonlinear elliptic equations when the diffusion is small
title_full On the number of stable positive solutions of weakly nonlinear elliptic equations when the diffusion is small
title_fullStr On the number of stable positive solutions of weakly nonlinear elliptic equations when the diffusion is small
title_full_unstemmed On the number of stable positive solutions of weakly nonlinear elliptic equations when the diffusion is small
title_sort On the number of stable positive solutions of weakly nonlinear elliptic equations when the diffusion is small
author_id_str_mv bae63d44230e78d316baedd6c0112f45
author_id_fullname_str_mv bae63d44230e78d316baedd6c0112f45_***_Norman Dancer
author Norman Dancer
author2 Norman Dancer
format Journal article
container_title Topological Methods in Nonlinear Analysis
container_volume 59
container_issue 2A
container_start_page 1
publishDate 2021
institution Swansea University
issn 1230-3429
doi_str_mv 10.12775/tmna.2020.025
publisher Uniwersytet Mikolaja Kopernika/Nicolaus Copernicus University
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 0
active_str 0
published_date 2021-05-25T04:18:48Z
_version_ 1763754249611640832
score 11.036006