No Cover Image

Journal article 699 views 52 downloads

E6(6) exceptional Drinfel’d algebras

Emanuel Malek Orcid Logo, Yuho Sakatani, Daniel Thompson Orcid Logo

Journal of High Energy Physics, Volume: 2021, Issue: 1

Swansea University Author: Daniel Thompson Orcid Logo

  • 60618.pdf

    PDF | Version of Record

    Copyright: The Authors. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0)

    Download (550.83KB)

Abstract

The exceptional Drinfel’d algebra (EDA) is a Leibniz algebra introduced to provide an algebraic underpinning with which to explore generalised notions of U-duality in M-theory. In essence, it provides an M-theoretic analogue of the way a Drinfel’d double encodes generalised T-dualities of strings. I...

Full description

Published in: Journal of High Energy Physics
ISSN: 1029-8479
Published: Springer Science and Business Media LLC 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa60618
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2022-07-25T09:54:19Z
last_indexed 2023-01-13T19:20:52Z
id cronfa60618
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-10-25T14:31:45.6693079</datestamp><bib-version>v2</bib-version><id>60618</id><entry>2022-07-25</entry><title>E6(6) exceptional Drinfel&#x2019;d algebras</title><swanseaauthors><author><sid>9c8715ee44a574eda1194c9808d99c62</sid><ORCID>0000-0001-8319-8275</ORCID><firstname>Daniel</firstname><surname>Thompson</surname><name>Daniel Thompson</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-07-25</date><deptcode>SPH</deptcode><abstract>The exceptional Drinfel&#x2019;d algebra (EDA) is a Leibniz algebra introduced to provide an algebraic underpinning with which to explore generalised notions of U-duality in M-theory. In essence, it provides an M-theoretic analogue of the way a Drinfel&#x2019;d double encodes generalised T-dualities of strings. In this note we detail the construction of the EDA in the case where the regular U-duality group is E6(6). We show how the EDA can be realised geometrically as a generalised Leibniz parallelisation of the exceptional generalised tangent bundle for a six-dimensional group manifold G, endowed with a Nambu-Lie structure. When the EDA is of coboundary type, we show how a natural generalisation of the classical Yang-Baxter equation arises. The construction is illustrated with a selection of examples including some which embed Drinfel&#x2019;d doubles and others that are not of this type.</abstract><type>Journal Article</type><journal>Journal of High Energy Physics</journal><volume>2021</volume><journalNumber>1</journalNumber><paginationStart/><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>1029-8479</issnElectronic><keywords>Flux compactifications, M-Theory, String Duality, Superstring Vacua</keywords><publishedDay>5</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-01-05</publishedDate><doi>10.1007/jhep01(2021)020</doi><url/><notes/><college>COLLEGE NANME</college><department>Physics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SPH</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>SCOAP3</funders><projectreference/><lastEdited>2022-10-25T14:31:45.6693079</lastEdited><Created>2022-07-25T10:52:06.1732552</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Emanuel</firstname><surname>Malek</surname><orcid>0000-0003-0196-3610</orcid><order>1</order></author><author><firstname>Yuho</firstname><surname>Sakatani</surname><order>2</order></author><author><firstname>Daniel</firstname><surname>Thompson</surname><orcid>0000-0001-8319-8275</orcid><order>3</order></author></authors><documents><document><filename>60618__24728__307fc2acf984439ca6630d6ddab1c1c8.pdf</filename><originalFilename>60618.pdf</originalFilename><uploaded>2022-07-25T10:54:08.1939476</uploaded><type>Output</type><contentLength>564055</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Copyright: The Authors. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-10-25T14:31:45.6693079 v2 60618 2022-07-25 E6(6) exceptional Drinfel’d algebras 9c8715ee44a574eda1194c9808d99c62 0000-0001-8319-8275 Daniel Thompson Daniel Thompson true false 2022-07-25 SPH The exceptional Drinfel’d algebra (EDA) is a Leibniz algebra introduced to provide an algebraic underpinning with which to explore generalised notions of U-duality in M-theory. In essence, it provides an M-theoretic analogue of the way a Drinfel’d double encodes generalised T-dualities of strings. In this note we detail the construction of the EDA in the case where the regular U-duality group is E6(6). We show how the EDA can be realised geometrically as a generalised Leibniz parallelisation of the exceptional generalised tangent bundle for a six-dimensional group manifold G, endowed with a Nambu-Lie structure. When the EDA is of coboundary type, we show how a natural generalisation of the classical Yang-Baxter equation arises. The construction is illustrated with a selection of examples including some which embed Drinfel’d doubles and others that are not of this type. Journal Article Journal of High Energy Physics 2021 1 Springer Science and Business Media LLC 1029-8479 Flux compactifications, M-Theory, String Duality, Superstring Vacua 5 1 2021 2021-01-05 10.1007/jhep01(2021)020 COLLEGE NANME Physics COLLEGE CODE SPH Swansea University SCOAP3 2022-10-25T14:31:45.6693079 2022-07-25T10:52:06.1732552 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Emanuel Malek 0000-0003-0196-3610 1 Yuho Sakatani 2 Daniel Thompson 0000-0001-8319-8275 3 60618__24728__307fc2acf984439ca6630d6ddab1c1c8.pdf 60618.pdf 2022-07-25T10:54:08.1939476 Output 564055 application/pdf Version of Record true Copyright: The Authors. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0) true eng https://creativecommons.org/licenses/by/4.0/
title E6(6) exceptional Drinfel’d algebras
spellingShingle E6(6) exceptional Drinfel’d algebras
Daniel Thompson
title_short E6(6) exceptional Drinfel’d algebras
title_full E6(6) exceptional Drinfel’d algebras
title_fullStr E6(6) exceptional Drinfel’d algebras
title_full_unstemmed E6(6) exceptional Drinfel’d algebras
title_sort E6(6) exceptional Drinfel’d algebras
author_id_str_mv 9c8715ee44a574eda1194c9808d99c62
author_id_fullname_str_mv 9c8715ee44a574eda1194c9808d99c62_***_Daniel Thompson
author Daniel Thompson
author2 Emanuel Malek
Yuho Sakatani
Daniel Thompson
format Journal article
container_title Journal of High Energy Physics
container_volume 2021
container_issue 1
publishDate 2021
institution Swansea University
issn 1029-8479
doi_str_mv 10.1007/jhep01(2021)020
publisher Springer Science and Business Media LLC
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
document_store_str 1
active_str 0
description The exceptional Drinfel’d algebra (EDA) is a Leibniz algebra introduced to provide an algebraic underpinning with which to explore generalised notions of U-duality in M-theory. In essence, it provides an M-theoretic analogue of the way a Drinfel’d double encodes generalised T-dualities of strings. In this note we detail the construction of the EDA in the case where the regular U-duality group is E6(6). We show how the EDA can be realised geometrically as a generalised Leibniz parallelisation of the exceptional generalised tangent bundle for a six-dimensional group manifold G, endowed with a Nambu-Lie structure. When the EDA is of coboundary type, we show how a natural generalisation of the classical Yang-Baxter equation arises. The construction is illustrated with a selection of examples including some which embed Drinfel’d doubles and others that are not of this type.
published_date 2021-01-05T04:18:52Z
_version_ 1763754254243201024
score 11.036706