No Cover Image

Journal article 462 views 36 downloads

Nonintrusive parametric NVH study of a vehicle body structure

F. Cavaliere Orcid Logo, S. Zlotnik Orcid Logo, Rubén Sevilla Orcid Logo, X. Larrayoz, P. Díez Orcid Logo

Mechanics Based Design of Structures and Machines, Volume: 51, Issue: 11, Pages: 1 - 26

Swansea University Author: Rubén Sevilla Orcid Logo

  • 60646.pdf

    PDF | Version of Record

    Copyright: 2022 The Author(s). Distributed under the terms of a Creative Commons Attribution 4.0 License (CC BY 4.0).

    Download (5.08MB)

Abstract

A reduced order model technique is presented to perform the parametric Noise, Vibration and Harshness (NVH) study of a vehicle body-in-white (BIW) structure characterized by material and shape design variables. The ultimate goal is to develop a methodology which allows to efficiently explore the var...

Full description

Published in: Mechanics Based Design of Structures and Machines
ISSN: 1539-7734 1539-7742
Published: Informa UK Limited 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa60646
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: A reduced order model technique is presented to perform the parametric Noise, Vibration and Harshness (NVH) study of a vehicle body-in-white (BIW) structure characterized by material and shape design variables. The ultimate goal is to develop a methodology which allows to efficiently explore the variation in the design space of the BIW static and dynamic global stiffnesses, such that the NVH performance can be evaluated already in the preliminary phase of the development process. The proposed technique is based on the proper generalized decomposition (PGD) method. The obtained PGD solution presents an explicit dependency on the introduced design variables, which allows to obtain solutions in 0.1 milliseconds and therefore opens the door to fast optimization studies and real-time visualizations of the results in a pre-defined range of parameters. The method is nonintrusive, such that an interaction with commercial software is possible. A parametrized finite element (FE) model of the BIW is built by means of the ANSA CAE preprocessor software, which allows to account for material and geometric parameters. A comparison between the parametric NVH solutions and the full-order FE simulations is performed using the MSC-Nastran software, to validate the accuracy of the proposed method. In addition, an optimization study is presented to find the optimal materials and shape properties with respect to the NVH performance. Finally, in order to support the designers in the decision-making process, a graphical interface app is developed which allows to visualize in real-time how changes in the design variables affect pre-defined quantities of interest.
Keywords: Proper generalized decomposition, BiW, shape optimization, real-time, parametric modal analysis, inertia relief, NVH
College: Faculty of Science and Engineering
Funders: This project is part of the Marie Skłodowska-Curie ITN-EJD ProTechTion funded by the European Union Horizon 2020 research and innovation program with Grant Number 764636. The work of Fabiola Cavaliere, Sergio Zlotnik and Pedro Díez is partially supported by the MCIN/AEI/10.13039/501100011033, Spain (Grant Number: PID2020-113463RB-C32, PID2020-113463RB-C33 and CEX2018-000797-S). Ruben Sevilla also acknowledges the support of the Engineering and Physical Sciences Research Council (Grant Number: EP/T009071/1).
Issue: 11
Start Page: 1
End Page: 26