No Cover Image

Journal article 480 views 39 downloads

Hybrid magnetorheological elastomers enable versatile soft actuators

Miguel Angel Moreno-Mateos Orcid Logo, Mokarram Hossain Orcid Logo, Paul Steinmann Orcid Logo, Daniel Garcia-Gonzalez Orcid Logo

npj Computational Materials, Volume: 8, Issue: 1

Swansea University Author: Mokarram Hossain Orcid Logo

  • 60678.pdf

    PDF | Version of Record

    © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License

    Download (5.68MB)

Abstract

Recent advances in magnetorheological elastomers (MREs) have posed the question on whether the combination of both soft- and hard-magnetic particles may open new routes to design versatile multifunctional actuators. Here, we conceptualise ultra-soft hybrid MREs (≈1–10 kPa stiffness) combining experi...

Full description

Published in: npj Computational Materials
ISSN: 2057-3960
Published: Springer Science and Business Media LLC 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa60678
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2022-07-29T14:03:37Z
last_indexed 2023-01-13T19:20:59Z
id cronfa60678
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-10-31T20:25:36.4988074</datestamp><bib-version>v2</bib-version><id>60678</id><entry>2022-07-29</entry><title>Hybrid magnetorheological elastomers enable versatile soft actuators</title><swanseaauthors><author><sid>140f4aa5c5ec18ec173c8542a7fddafd</sid><ORCID>0000-0002-4616-1104</ORCID><firstname>Mokarram</firstname><surname>Hossain</surname><name>Mokarram Hossain</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-07-29</date><deptcode>GENG</deptcode><abstract>Recent advances in magnetorheological elastomers (MREs) have posed the question on whether the combination of both soft- and hard-magnetic particles may open new routes to design versatile multifunctional actuators. Here, we conceptualise ultra-soft hybrid MREs (&#x2248;1&#x2013;10&#x2009;kPa stiffness) combining experimental and computational approaches. First, a comprehensive experimental characterisation is performed. The results unravel that the magneto-mechanical performance of hybrid MREs can be optimised by selecting an adequate mixing ratio between particles. Then, a multi-physics computational framework provides insights into the synergistic magneto-mechanical interactions at the microscale. Soft particles amplify the magnetisation and hard particles contribute to torsional actuation. Our numerical results suggest that the effective response of hybrid MREs emerges from these intricate interactions. Overall, we uncover exciting possibilities to push the frontiers of MRE solutions. These are demonstrated by simulating a bimorph beam that provides actuation flexibility either enhancing mechanical bending or material stiffening, depending on the magnetic stimulation.</abstract><type>Journal Article</type><journal>npj Computational Materials</journal><volume>8</volume><journalNumber>1</journalNumber><paginationStart/><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2057-3960</issnElectronic><keywords/><publishedDay>28</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-07-28</publishedDate><doi>10.1038/s41524-022-00844-1</doi><url/><notes>Data availability: The data generated during the current study are available from the corresponding author upon reasonable request.</notes><college>COLLEGE NANME</college><department>General Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>GENG</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>The authors acknowledge support from the European Research Council (ERC) under the European Union&#x2019;s Horizon 2020 research and innovation programme (grant agreement No. 947723, project: 4D-BIOMAP). M.H. and D.G.G. acknowledge support from MCIN/AEI/10.13039/501100011033 under Grant number PID2020-117894GA-I00. M.A.M.M. acknowledges support from the Ministerio de Ciencia, Innovacion y Universidades, Spain (FPU19/03874). D.G.G. acknowledges support from the Talent Attraction grant (CM 2018- 2018-T2/IND-9992) from the Comunidad de Madrid. M.H. acknowledges the funding through an EPSRC Impact Acceleration Award (EP/R511614/1).</funders><projectreference/><lastEdited>2022-10-31T20:25:36.4988074</lastEdited><Created>2022-07-29T15:00:49.9156227</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - General Engineering</level></path><authors><author><firstname>Miguel Angel</firstname><surname>Moreno-Mateos</surname><orcid>0000-0002-3476-2180</orcid><order>1</order></author><author><firstname>Mokarram</firstname><surname>Hossain</surname><orcid>0000-0002-4616-1104</orcid><order>2</order></author><author><firstname>Paul</firstname><surname>Steinmann</surname><orcid>0000-0003-1490-947x</orcid><order>3</order></author><author><firstname>Daniel</firstname><surname>Garcia-Gonzalez</surname><orcid>0000-0003-4692-3508</orcid><order>4</order></author></authors><documents><document><filename>60678__24780__ba9ac45c38724202996e6a18fa132ed0.pdf</filename><originalFilename>60678.pdf</originalFilename><uploaded>2022-07-29T15:03:35.9386653</uploaded><type>Output</type><contentLength>5954590</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-10-31T20:25:36.4988074 v2 60678 2022-07-29 Hybrid magnetorheological elastomers enable versatile soft actuators 140f4aa5c5ec18ec173c8542a7fddafd 0000-0002-4616-1104 Mokarram Hossain Mokarram Hossain true false 2022-07-29 GENG Recent advances in magnetorheological elastomers (MREs) have posed the question on whether the combination of both soft- and hard-magnetic particles may open new routes to design versatile multifunctional actuators. Here, we conceptualise ultra-soft hybrid MREs (≈1–10 kPa stiffness) combining experimental and computational approaches. First, a comprehensive experimental characterisation is performed. The results unravel that the magneto-mechanical performance of hybrid MREs can be optimised by selecting an adequate mixing ratio between particles. Then, a multi-physics computational framework provides insights into the synergistic magneto-mechanical interactions at the microscale. Soft particles amplify the magnetisation and hard particles contribute to torsional actuation. Our numerical results suggest that the effective response of hybrid MREs emerges from these intricate interactions. Overall, we uncover exciting possibilities to push the frontiers of MRE solutions. These are demonstrated by simulating a bimorph beam that provides actuation flexibility either enhancing mechanical bending or material stiffening, depending on the magnetic stimulation. Journal Article npj Computational Materials 8 1 Springer Science and Business Media LLC 2057-3960 28 7 2022 2022-07-28 10.1038/s41524-022-00844-1 Data availability: The data generated during the current study are available from the corresponding author upon reasonable request. COLLEGE NANME General Engineering COLLEGE CODE GENG Swansea University The authors acknowledge support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 947723, project: 4D-BIOMAP). M.H. and D.G.G. acknowledge support from MCIN/AEI/10.13039/501100011033 under Grant number PID2020-117894GA-I00. M.A.M.M. acknowledges support from the Ministerio de Ciencia, Innovacion y Universidades, Spain (FPU19/03874). D.G.G. acknowledges support from the Talent Attraction grant (CM 2018- 2018-T2/IND-9992) from the Comunidad de Madrid. M.H. acknowledges the funding through an EPSRC Impact Acceleration Award (EP/R511614/1). 2022-10-31T20:25:36.4988074 2022-07-29T15:00:49.9156227 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - General Engineering Miguel Angel Moreno-Mateos 0000-0002-3476-2180 1 Mokarram Hossain 0000-0002-4616-1104 2 Paul Steinmann 0000-0003-1490-947x 3 Daniel Garcia-Gonzalez 0000-0003-4692-3508 4 60678__24780__ba9ac45c38724202996e6a18fa132ed0.pdf 60678.pdf 2022-07-29T15:03:35.9386653 Output 5954590 application/pdf Version of Record true © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License true eng http://creativecommons.org/licenses/by/4.0/
title Hybrid magnetorheological elastomers enable versatile soft actuators
spellingShingle Hybrid magnetorheological elastomers enable versatile soft actuators
Mokarram Hossain
title_short Hybrid magnetorheological elastomers enable versatile soft actuators
title_full Hybrid magnetorheological elastomers enable versatile soft actuators
title_fullStr Hybrid magnetorheological elastomers enable versatile soft actuators
title_full_unstemmed Hybrid magnetorheological elastomers enable versatile soft actuators
title_sort Hybrid magnetorheological elastomers enable versatile soft actuators
author_id_str_mv 140f4aa5c5ec18ec173c8542a7fddafd
author_id_fullname_str_mv 140f4aa5c5ec18ec173c8542a7fddafd_***_Mokarram Hossain
author Mokarram Hossain
author2 Miguel Angel Moreno-Mateos
Mokarram Hossain
Paul Steinmann
Daniel Garcia-Gonzalez
format Journal article
container_title npj Computational Materials
container_volume 8
container_issue 1
publishDate 2022
institution Swansea University
issn 2057-3960
doi_str_mv 10.1038/s41524-022-00844-1
publisher Springer Science and Business Media LLC
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - General Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - General Engineering
document_store_str 1
active_str 0
description Recent advances in magnetorheological elastomers (MREs) have posed the question on whether the combination of both soft- and hard-magnetic particles may open new routes to design versatile multifunctional actuators. Here, we conceptualise ultra-soft hybrid MREs (≈1–10 kPa stiffness) combining experimental and computational approaches. First, a comprehensive experimental characterisation is performed. The results unravel that the magneto-mechanical performance of hybrid MREs can be optimised by selecting an adequate mixing ratio between particles. Then, a multi-physics computational framework provides insights into the synergistic magneto-mechanical interactions at the microscale. Soft particles amplify the magnetisation and hard particles contribute to torsional actuation. Our numerical results suggest that the effective response of hybrid MREs emerges from these intricate interactions. Overall, we uncover exciting possibilities to push the frontiers of MRE solutions. These are demonstrated by simulating a bimorph beam that provides actuation flexibility either enhancing mechanical bending or material stiffening, depending on the magnetic stimulation.
published_date 2022-07-28T04:18:59Z
_version_ 1763754261229862912
score 11.012678