Journal article 323 views 67 downloads
Sex-specific disease modifiers in juvenile myoclonic epilepsy
Amy Shakeshaft,
Naim Panjwani,
Amber Collingwood,
Holly Crudgington,
Anna Hall,
Danielle M. Andrade,
Christoph P. Beier,
Choong Yi Fong,
Elena Gardella,
Joanna Gesche,
David A. Greenberg,
Khalid Hamandi,
Jeanette Koht,
Kheng Seang Lim,
Rikke S. Møller,
Ching Ching Ng,
Alessandro Orsini,
Mark Rees,
Guido Rubboli,
Kaja K. Selmer,
Pasquale Striano,
Marte Syvertsen,
Rhys H. Thomas,
Jana Zarubova,
Mark P. Richardson,
Lisa J. Strug,
Deb K. Pal
Scientific Reports, Volume: 12, Issue: 1
Swansea University Author: Mark Rees
-
PDF | Version of Record
This article is licensed under a Creative Commons Attribution 4.0 International License
Download (1.88MB)
DOI (Published version): 10.1038/s41598-022-06324-2
Abstract
Juvenile myoclonic epilepsy (JME) is a common idiopathic generalised epilepsy with variable seizure prognosis and sex differences in disease presentation. Here, we investigate the combined epidemiology of sex, seizure types and precipitants, and their influence on prognosis in JME, through cross-sec...
Published in: | Scientific Reports |
---|---|
ISSN: | 2045-2322 |
Published: |
Springer Science and Business Media LLC
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa60751 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract: |
Juvenile myoclonic epilepsy (JME) is a common idiopathic generalised epilepsy with variable seizure prognosis and sex differences in disease presentation. Here, we investigate the combined epidemiology of sex, seizure types and precipitants, and their influence on prognosis in JME, through cross-sectional data collected by The Biology of Juvenile Myoclonic Epilepsy (BIOJUME) consortium. 765 individuals met strict inclusion criteria for JME (female:male, 1.8:1). 59% of females and 50% of males reported triggered seizures, and in females only, this was associated with experiencing absence seizures (OR = 2.0, p < 0.001). Absence seizures significantly predicted drug resistance in both males (OR = 3.0, p = 0.001) and females (OR = 3.0, p < 0.001) in univariate analysis. In multivariable analysis in females, catamenial seizures (OR = 14.7, p = 0.001), absence seizures (OR = 6.0, p < 0.001) and stress-precipitated seizures (OR = 5.3, p = 0.02) were associated with drug resistance, while a photoparoxysmal response predicted seizure freedom (OR = 0.47, p = 0.03). Females with both absence seizures and stress-related precipitants constitute the prognostic subgroup in JME with the highest prevalence of drug resistance (49%) compared to females with neither (15%) and males (29%), highlighting the unmet need for effective, targeted interventions for this subgroup. We propose a new prognostic stratification for JME and suggest a role for circuit-based risk of seizure control as an avenue for further investigation. |
---|---|
College: |
Faculty of Medicine, Health and Life Sciences |
Funders: |
This work was supported by the Canadian Institutes of Health Research: Biology of Juvenile Myoclonic Epilepsy 201503MOP‐342469 (DKP, LJS) and 201809FDN-407295 (LJS); UK Medical Research Council, Centre for Neurodevelopmental Disorders MR/N026063/1 (DKP, MPR); UK Medical Research Council, Programme Grant MR/K013998/1, (MPR); PhD stipend from UK Medical Research Council and the Sackler Institute for Translational Neurodevelopment (AS); NIHR Specialist Biomedical Research Centre for Mental Health of South London and Maudsley National Health Service Foundation Trust (DKP, MPR); UK Engineering and Physical Sciences Research Council, Centre for Predictive Modelling in Healthcare (EP/N014391/1 (MPR)); DINOGMI Department of Excellence of MIUR 2018–2022 (legge 232 del 2016 (PS)); Wales BRAIN Unit and Research Delivery Staff funded by Welsh Government through Health and Care Research Wales (KH); Biomarin srl, ENECTA srl, GW Pharmaceuticals, Kolfarma srl. and Eisai (PS); South-Eastern Regional Health Authority, Norway (Project Number 2016129) (JK); The Research Council of Norway (Project Number 299266 (MS)); Epilepsy Research UK (RT, MR); Health & Care Research Wales (MR), Wales Gene Park (MR), Abertawe Bro Morgannwg University NHS R&D (MR); UCB (GR); Nationwide Children’s Hospital (DAG); Odense University Hospital (JG); University of Southern Denmark (17/18517 (CPB)). |
Issue: |
1 |