Journal article 697 views 153 downloads
Supporting proactive planning for climate change adaptation and conservation using an attributed road-river structure dataset
Journal of Environmental Management, Volume: 321, Start page: 115959
Swansea University Author: Stephanie Januchowski-Hartley
-
PDF | Version of Record
© 2022 The Authors. This is an open access article under the CC BY license
Download (6.7MB)
DOI (Published version): 10.1016/j.jenvman.2022.115959
Abstract
Freshwater species and their habitats, and transportation networks are at heightened risk from changing climate and are priorities for adaptation, with the sheer abundance and individuality of road-river structures complicating mitigation efforts. We present a new spatial dataset of road-river struc...
Published in: | Journal of Environmental Management |
---|---|
ISSN: | 0301-4797 |
Published: |
Elsevier BV
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa60852 |
first_indexed |
2022-08-18T11:39:18Z |
---|---|
last_indexed |
2023-01-13T19:21:17Z |
id |
cronfa60852 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-09-23T16:45:52.2600270</datestamp><bib-version>v2</bib-version><id>60852</id><entry>2022-08-18</entry><title>Supporting proactive planning for climate change adaptation and conservation using an attributed road-river structure dataset</title><swanseaauthors><author><sid>b634c6a9429ed84ced10e9033d27659d</sid><firstname>Stephanie</firstname><surname>Januchowski-Hartley</surname><name>Stephanie Januchowski-Hartley</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-08-18</date><deptcode>BGPS</deptcode><abstract>Freshwater species and their habitats, and transportation networks are at heightened risk from changing climate and are priorities for adaptation, with the sheer abundance and individuality of road-river structures complicating mitigation efforts. We present a new spatial dataset of road-river structures attributed as culverts, bridges, or fords, and use this along with data on gradient and stream order to estimate structure sensitivity and exposure in and out of special areas of conservation (SAC) and built-up areas to determine vulnerability to damage across river catchments in Wales, UK. We then assess hazard of flooding likelihood at the most vulnerable structures to determine those posing high risk of impact on roads and river-obligate species (fishes and mussels) whose persistence depends on aquatic habitat connectivity. Over 5% (624/11,680) of structures are high vulnerability and located where flooding hazard is highest, posing high risk of impact to roads and river-obligate species. We assess reliability of our approach through an on-ground survey in a river catchment supporting an SAC and more than 40% (n = 255) of high-risk structures, and show that of the subset surveyed >50% had obvious physical degradation, streambank erosion, and scouring. Our findings help us to better understand which structures pose high-risk of impact to river-obligate species and humans with increased flooding likelihood.</abstract><type>Journal Article</type><journal>Journal of Environmental Management</journal><volume>321</volume><journalNumber/><paginationStart>115959</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0301-4797</issnPrint><issnElectronic/><keywords>Connectivity; Flooding; Risk; Rivers; Roads; Transportation; Vulnerability</keywords><publishedDay>1</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-11-01</publishedDate><doi>10.1016/j.jenvman.2022.115959</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>Welsh European Funding Office 80761-SU-140 (West); European Regional Development Fund 80761-SU-140 (West); Engineering and Physical Sciences Research Council EP/R00742X/2</funders><projectreference/><lastEdited>2022-09-23T16:45:52.2600270</lastEdited><Created>2022-08-18T12:37:54.6322279</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Biosciences</level></path><authors><author><firstname>Stephanie</firstname><surname>Januchowski-Hartley</surname><order>1</order></author><author><firstname>Sayali K.</firstname><surname>Pawar</surname><order>2</order></author><author><firstname>Xiao</firstname><surname>Yang</surname><orcid>0000-0002-0046-832x</orcid><order>3</order></author><author><firstname>Michiel</firstname><surname>Jorissen</surname><orcid>0000-0003-4755-9760</orcid><order>4</order></author><author><firstname>Rochelle</firstname><surname>Bristol</surname><order>5</order></author><author><firstname>Sukhmani</firstname><surname>Mantel</surname><order>6</order></author><author><firstname>James C.</firstname><surname>White</surname><order>7</order></author><author><firstname>Fraser A.</firstname><surname>Januchowski-Hartley</surname><order>8</order></author><author><firstname>José V.</firstname><surname>Roces-Díaz</surname><order>9</order></author><author><firstname>Carlos Cabo</firstname><surname>Gomez</surname><order>10</order></author><author><firstname>Maria</firstname><surname>Pregnolato</surname><orcid>0000-0003-0796-9618</orcid><order>11</order></author></authors><documents><document><filename>60852__25096__8a3e5e81e1084bc7a8b833c0fe892a62.pdf</filename><originalFilename>60852_VoR.pdf</originalFilename><uploaded>2022-09-08T16:55:44.9645532</uploaded><type>Output</type><contentLength>7021064</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2022 The Authors. This is an open access article under the CC BY license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-09-23T16:45:52.2600270 v2 60852 2022-08-18 Supporting proactive planning for climate change adaptation and conservation using an attributed road-river structure dataset b634c6a9429ed84ced10e9033d27659d Stephanie Januchowski-Hartley Stephanie Januchowski-Hartley true false 2022-08-18 BGPS Freshwater species and their habitats, and transportation networks are at heightened risk from changing climate and are priorities for adaptation, with the sheer abundance and individuality of road-river structures complicating mitigation efforts. We present a new spatial dataset of road-river structures attributed as culverts, bridges, or fords, and use this along with data on gradient and stream order to estimate structure sensitivity and exposure in and out of special areas of conservation (SAC) and built-up areas to determine vulnerability to damage across river catchments in Wales, UK. We then assess hazard of flooding likelihood at the most vulnerable structures to determine those posing high risk of impact on roads and river-obligate species (fishes and mussels) whose persistence depends on aquatic habitat connectivity. Over 5% (624/11,680) of structures are high vulnerability and located where flooding hazard is highest, posing high risk of impact to roads and river-obligate species. We assess reliability of our approach through an on-ground survey in a river catchment supporting an SAC and more than 40% (n = 255) of high-risk structures, and show that of the subset surveyed >50% had obvious physical degradation, streambank erosion, and scouring. Our findings help us to better understand which structures pose high-risk of impact to river-obligate species and humans with increased flooding likelihood. Journal Article Journal of Environmental Management 321 115959 Elsevier BV 0301-4797 Connectivity; Flooding; Risk; Rivers; Roads; Transportation; Vulnerability 1 11 2022 2022-11-01 10.1016/j.jenvman.2022.115959 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University SU Library paid the OA fee (TA Institutional Deal) Welsh European Funding Office 80761-SU-140 (West); European Regional Development Fund 80761-SU-140 (West); Engineering and Physical Sciences Research Council EP/R00742X/2 2022-09-23T16:45:52.2600270 2022-08-18T12:37:54.6322279 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Biosciences Stephanie Januchowski-Hartley 1 Sayali K. Pawar 2 Xiao Yang 0000-0002-0046-832x 3 Michiel Jorissen 0000-0003-4755-9760 4 Rochelle Bristol 5 Sukhmani Mantel 6 James C. White 7 Fraser A. Januchowski-Hartley 8 José V. Roces-Díaz 9 Carlos Cabo Gomez 10 Maria Pregnolato 0000-0003-0796-9618 11 60852__25096__8a3e5e81e1084bc7a8b833c0fe892a62.pdf 60852_VoR.pdf 2022-09-08T16:55:44.9645532 Output 7021064 application/pdf Version of Record true © 2022 The Authors. This is an open access article under the CC BY license true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Supporting proactive planning for climate change adaptation and conservation using an attributed road-river structure dataset |
spellingShingle |
Supporting proactive planning for climate change adaptation and conservation using an attributed road-river structure dataset Stephanie Januchowski-Hartley |
title_short |
Supporting proactive planning for climate change adaptation and conservation using an attributed road-river structure dataset |
title_full |
Supporting proactive planning for climate change adaptation and conservation using an attributed road-river structure dataset |
title_fullStr |
Supporting proactive planning for climate change adaptation and conservation using an attributed road-river structure dataset |
title_full_unstemmed |
Supporting proactive planning for climate change adaptation and conservation using an attributed road-river structure dataset |
title_sort |
Supporting proactive planning for climate change adaptation and conservation using an attributed road-river structure dataset |
author_id_str_mv |
b634c6a9429ed84ced10e9033d27659d |
author_id_fullname_str_mv |
b634c6a9429ed84ced10e9033d27659d_***_Stephanie Januchowski-Hartley |
author |
Stephanie Januchowski-Hartley |
author2 |
Stephanie Januchowski-Hartley Sayali K. Pawar Xiao Yang Michiel Jorissen Rochelle Bristol Sukhmani Mantel James C. White Fraser A. Januchowski-Hartley José V. Roces-Díaz Carlos Cabo Gomez Maria Pregnolato |
format |
Journal article |
container_title |
Journal of Environmental Management |
container_volume |
321 |
container_start_page |
115959 |
publishDate |
2022 |
institution |
Swansea University |
issn |
0301-4797 |
doi_str_mv |
10.1016/j.jenvman.2022.115959 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Biosciences{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Biosciences |
document_store_str |
1 |
active_str |
0 |
description |
Freshwater species and their habitats, and transportation networks are at heightened risk from changing climate and are priorities for adaptation, with the sheer abundance and individuality of road-river structures complicating mitigation efforts. We present a new spatial dataset of road-river structures attributed as culverts, bridges, or fords, and use this along with data on gradient and stream order to estimate structure sensitivity and exposure in and out of special areas of conservation (SAC) and built-up areas to determine vulnerability to damage across river catchments in Wales, UK. We then assess hazard of flooding likelihood at the most vulnerable structures to determine those posing high risk of impact on roads and river-obligate species (fishes and mussels) whose persistence depends on aquatic habitat connectivity. Over 5% (624/11,680) of structures are high vulnerability and located where flooding hazard is highest, posing high risk of impact to roads and river-obligate species. We assess reliability of our approach through an on-ground survey in a river catchment supporting an SAC and more than 40% (n = 255) of high-risk structures, and show that of the subset surveyed >50% had obvious physical degradation, streambank erosion, and scouring. Our findings help us to better understand which structures pose high-risk of impact to river-obligate species and humans with increased flooding likelihood. |
published_date |
2022-11-01T20:21:47Z |
_version_ |
1822163057104650240 |
score |
11.048453 |