Journal article 1019 views
Shallow buried improvised explosive device detection via convolutional neural networks
Simon Colreavy-Donnelly,
Fabio Caraffini
,
Stefan Kuhn,
Mario Gongora,
Johana Florez-Lozano,
Carlos Parra
Integrated Computer-Aided Engineering, Volume: 27, Issue: 4, Pages: 403 - 416
Swansea University Author:
Fabio Caraffini
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.3233/ica-200638
Abstract
Shallow buried improvised explosive device detection via convolutional neural networks
| Published in: | Integrated Computer-Aided Engineering |
|---|---|
| ISSN: | 1069-2509 1875-8835 |
| Published: |
IOS Press
2020
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa60943 |
| first_indexed |
2022-09-21T14:00:49Z |
|---|---|
| last_indexed |
2023-01-13T19:21:26Z |
| id |
cronfa60943 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-09-21T15:00:55.4273780</datestamp><bib-version>v2</bib-version><id>60943</id><entry>2022-08-28</entry><title>Shallow buried improvised explosive device detection via convolutional neural networks</title><swanseaauthors><author><sid>d0b8d4e63d512d4d67a02a23dd20dfdb</sid><ORCID>0000-0001-9199-7368</ORCID><firstname>Fabio</firstname><surname>Caraffini</surname><name>Fabio Caraffini</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-08-28</date><deptcode>MACS</deptcode><abstract/><type>Journal Article</type><journal>Integrated Computer-Aided Engineering</journal><volume>27</volume><journalNumber>4</journalNumber><paginationStart>403</paginationStart><paginationEnd>416</paginationEnd><publisher>IOS Press</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1069-2509</issnPrint><issnElectronic>1875-8835</issnElectronic><keywords>Land mine detection, convolutional neural network, land sensing, image processing, improvised explosive device</keywords><publishedDay>11</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-09-11</publishedDate><doi>10.3233/ica-200638</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-09-21T15:00:55.4273780</lastEdited><Created>2022-08-28T20:18:46.1108436</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Simon</firstname><surname>Colreavy-Donnelly</surname><order>1</order></author><author><firstname>Fabio</firstname><surname>Caraffini</surname><orcid>0000-0001-9199-7368</orcid><order>2</order></author><author><firstname>Stefan</firstname><surname>Kuhn</surname><order>3</order></author><author><firstname>Mario</firstname><surname>Gongora</surname><order>4</order></author><author><firstname>Johana</firstname><surname>Florez-Lozano</surname><order>5</order></author><author><firstname>Carlos</firstname><surname>Parra</surname><order>6</order></author></authors><documents/><OutputDurs/></rfc1807> |
| spelling |
2022-09-21T15:00:55.4273780 v2 60943 2022-08-28 Shallow buried improvised explosive device detection via convolutional neural networks d0b8d4e63d512d4d67a02a23dd20dfdb 0000-0001-9199-7368 Fabio Caraffini Fabio Caraffini true false 2022-08-28 MACS Journal Article Integrated Computer-Aided Engineering 27 4 403 416 IOS Press 1069-2509 1875-8835 Land mine detection, convolutional neural network, land sensing, image processing, improvised explosive device 11 9 2020 2020-09-11 10.3233/ica-200638 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2022-09-21T15:00:55.4273780 2022-08-28T20:18:46.1108436 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Simon Colreavy-Donnelly 1 Fabio Caraffini 0000-0001-9199-7368 2 Stefan Kuhn 3 Mario Gongora 4 Johana Florez-Lozano 5 Carlos Parra 6 |
| title |
Shallow buried improvised explosive device detection via convolutional neural networks |
| spellingShingle |
Shallow buried improvised explosive device detection via convolutional neural networks Fabio Caraffini |
| title_short |
Shallow buried improvised explosive device detection via convolutional neural networks |
| title_full |
Shallow buried improvised explosive device detection via convolutional neural networks |
| title_fullStr |
Shallow buried improvised explosive device detection via convolutional neural networks |
| title_full_unstemmed |
Shallow buried improvised explosive device detection via convolutional neural networks |
| title_sort |
Shallow buried improvised explosive device detection via convolutional neural networks |
| author_id_str_mv |
d0b8d4e63d512d4d67a02a23dd20dfdb |
| author_id_fullname_str_mv |
d0b8d4e63d512d4d67a02a23dd20dfdb_***_Fabio Caraffini |
| author |
Fabio Caraffini |
| author2 |
Simon Colreavy-Donnelly Fabio Caraffini Stefan Kuhn Mario Gongora Johana Florez-Lozano Carlos Parra |
| format |
Journal article |
| container_title |
Integrated Computer-Aided Engineering |
| container_volume |
27 |
| container_issue |
4 |
| container_start_page |
403 |
| publishDate |
2020 |
| institution |
Swansea University |
| issn |
1069-2509 1875-8835 |
| doi_str_mv |
10.3233/ica-200638 |
| publisher |
IOS Press |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
| document_store_str |
0 |
| active_str |
0 |
| published_date |
2020-09-11T05:01:59Z |
| _version_ |
1851639799222370304 |
| score |
11.090009 |

