No Cover Image

Journal article 583 views 42 downloads

Efficient Computation of the Nonlinear Schrödinger Equation with Time-Dependent Coefficients

Athinoula A. Kosti Orcid Logo, Simon Colreavy-Donnelly Orcid Logo, Fabio Caraffini Orcid Logo, Zacharias A. Anastassi Orcid Logo

Mathematics, Volume: 8, Issue: 3, Start page: 374

Swansea University Author: Fabio Caraffini Orcid Logo

  • 60956_VoR.pdf

    PDF | Version of Record

    Copyright: 2020 by the authors. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license

    Download (1009.6KB)

Check full text

DOI (Published version): 10.3390/math8030374

Abstract

Motivated by the limited work performed on the development of computational techniques for solving the nonlinear Schrödinger equation with time-dependent coefficients, we develop a modified Runge–Kutta pair with improved periodicity and stability characteristics. Additionally, we develop a modified...

Full description

Published in: Mathematics
ISSN: 2227-7390
Published: MDPI AG 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa60956
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2022-09-21T13:46:36Z
last_indexed 2023-01-13T19:21:28Z
id cronfa60956
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-09-21T14:48:10.5240244</datestamp><bib-version>v2</bib-version><id>60956</id><entry>2022-08-28</entry><title>Efficient Computation of the Nonlinear Schr&#xF6;dinger Equation with Time-Dependent Coefficients</title><swanseaauthors><author><sid>d0b8d4e63d512d4d67a02a23dd20dfdb</sid><ORCID>0000-0001-9199-7368</ORCID><firstname>Fabio</firstname><surname>Caraffini</surname><name>Fabio Caraffini</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-08-28</date><deptcode>SCS</deptcode><abstract>Motivated by the limited work performed on the development of computational techniques for solving the nonlinear Schr&#xF6;dinger equation with time-dependent coefficients, we develop a modified Runge&#x2013;Kutta pair with improved periodicity and stability characteristics. Additionally, we develop a modified step size control algorithm, which increases the efficiency of our pair and all other pairs included in the numerical experiments. The numerical results on the nonlinear Schr&#xF6;dinger equation with a periodic solution verified the superiority of the new algorithm in terms of efficiency. The new method also presents a good behaviour of the maximum absolute error and the global norm in time, even after a high number of oscillations.</abstract><type>Journal Article</type><journal>Mathematics</journal><volume>8</volume><journalNumber>3</journalNumber><paginationStart>374</paginationStart><paginationEnd/><publisher>MDPI AG</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2227-7390</issnElectronic><keywords>nonlinear Schr&#xF6;dinger equation; periodic coefficients; varying dispersion; varying nonlinearity; Runge&#x2013;Kutta pair; phase-lag; amplification error; step size control; local error estimation</keywords><publishedDay>7</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-03-07</publishedDate><doi>10.3390/math8030374</doi><url/><notes/><college>COLLEGE NANME</college><department>Computer Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SCS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>This research received no external funding.</funders><projectreference/><lastEdited>2022-09-21T14:48:10.5240244</lastEdited><Created>2022-08-28T20:45:54.0644967</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Athinoula A.</firstname><surname>Kosti</surname><orcid>0000-0002-1634-1171</orcid><order>1</order></author><author><firstname>Simon</firstname><surname>Colreavy-Donnelly</surname><orcid>0000-0002-1795-6995</orcid><order>2</order></author><author><firstname>Fabio</firstname><surname>Caraffini</surname><orcid>0000-0001-9199-7368</orcid><order>3</order></author><author><firstname>Zacharias A.</firstname><surname>Anastassi</surname><orcid>0000-0001-9190-2816</orcid><order>4</order></author></authors><documents><document><filename>60956__25185__3669f6771f1741c5a2baae3a1828d42c.pdf</filename><originalFilename>60956_VoR.pdf</originalFilename><uploaded>2022-09-21T14:47:00.0369498</uploaded><type>Output</type><contentLength>1033828</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Copyright: 2020 by the authors. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-09-21T14:48:10.5240244 v2 60956 2022-08-28 Efficient Computation of the Nonlinear Schrödinger Equation with Time-Dependent Coefficients d0b8d4e63d512d4d67a02a23dd20dfdb 0000-0001-9199-7368 Fabio Caraffini Fabio Caraffini true false 2022-08-28 SCS Motivated by the limited work performed on the development of computational techniques for solving the nonlinear Schrödinger equation with time-dependent coefficients, we develop a modified Runge–Kutta pair with improved periodicity and stability characteristics. Additionally, we develop a modified step size control algorithm, which increases the efficiency of our pair and all other pairs included in the numerical experiments. The numerical results on the nonlinear Schrödinger equation with a periodic solution verified the superiority of the new algorithm in terms of efficiency. The new method also presents a good behaviour of the maximum absolute error and the global norm in time, even after a high number of oscillations. Journal Article Mathematics 8 3 374 MDPI AG 2227-7390 nonlinear Schrödinger equation; periodic coefficients; varying dispersion; varying nonlinearity; Runge–Kutta pair; phase-lag; amplification error; step size control; local error estimation 7 3 2020 2020-03-07 10.3390/math8030374 COLLEGE NANME Computer Science COLLEGE CODE SCS Swansea University This research received no external funding. 2022-09-21T14:48:10.5240244 2022-08-28T20:45:54.0644967 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Athinoula A. Kosti 0000-0002-1634-1171 1 Simon Colreavy-Donnelly 0000-0002-1795-6995 2 Fabio Caraffini 0000-0001-9199-7368 3 Zacharias A. Anastassi 0000-0001-9190-2816 4 60956__25185__3669f6771f1741c5a2baae3a1828d42c.pdf 60956_VoR.pdf 2022-09-21T14:47:00.0369498 Output 1033828 application/pdf Version of Record true Copyright: 2020 by the authors. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license true eng http://creativecommons.org/licenses/by/4.0/
title Efficient Computation of the Nonlinear Schrödinger Equation with Time-Dependent Coefficients
spellingShingle Efficient Computation of the Nonlinear Schrödinger Equation with Time-Dependent Coefficients
Fabio Caraffini
title_short Efficient Computation of the Nonlinear Schrödinger Equation with Time-Dependent Coefficients
title_full Efficient Computation of the Nonlinear Schrödinger Equation with Time-Dependent Coefficients
title_fullStr Efficient Computation of the Nonlinear Schrödinger Equation with Time-Dependent Coefficients
title_full_unstemmed Efficient Computation of the Nonlinear Schrödinger Equation with Time-Dependent Coefficients
title_sort Efficient Computation of the Nonlinear Schrödinger Equation with Time-Dependent Coefficients
author_id_str_mv d0b8d4e63d512d4d67a02a23dd20dfdb
author_id_fullname_str_mv d0b8d4e63d512d4d67a02a23dd20dfdb_***_Fabio Caraffini
author Fabio Caraffini
author2 Athinoula A. Kosti
Simon Colreavy-Donnelly
Fabio Caraffini
Zacharias A. Anastassi
format Journal article
container_title Mathematics
container_volume 8
container_issue 3
container_start_page 374
publishDate 2020
institution Swansea University
issn 2227-7390
doi_str_mv 10.3390/math8030374
publisher MDPI AG
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
document_store_str 1
active_str 0
description Motivated by the limited work performed on the development of computational techniques for solving the nonlinear Schrödinger equation with time-dependent coefficients, we develop a modified Runge–Kutta pair with improved periodicity and stability characteristics. Additionally, we develop a modified step size control algorithm, which increases the efficiency of our pair and all other pairs included in the numerical experiments. The numerical results on the nonlinear Schrödinger equation with a periodic solution verified the superiority of the new algorithm in terms of efficiency. The new method also presents a good behaviour of the maximum absolute error and the global norm in time, even after a high number of oscillations.
published_date 2020-03-07T04:19:29Z
_version_ 1763754293149564928
score 11.035634