Journal article 486 views
MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks
arXiv
Swansea University Author: Sophie Shermer
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.48550/arXiv.1909.03836
Abstract
MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks
Published in: | arXiv |
---|---|
Published: |
2019
|
Online Access: |
https://arxiv.org/abs/1909.03836 |
URI: | https://cronfa.swan.ac.uk/Record/cronfa61076 |
first_indexed |
2022-10-10T16:13:45Z |
---|---|
last_indexed |
2023-01-13T19:21:39Z |
id |
cronfa61076 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-10-17T13:18:45.8391468</datestamp><bib-version>v2</bib-version><id>61076</id><entry>2022-09-06</entry><title>MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks</title><swanseaauthors><author><sid>6ebef22eb31eafc75aedcf5bfe487777</sid><ORCID>0000-0002-5530-7750</ORCID><firstname>Sophie</firstname><surname>Shermer</surname><name>Sophie Shermer</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-09-06</date><deptcode>BGPS</deptcode><abstract/><type>Journal Article</type><journal>arXiv</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords/><publishedDay>6</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-09-06</publishedDate><doi>10.48550/arXiv.1909.03836</doi><url>https://arxiv.org/abs/1909.03836</url><notes>Preprint article before certification by peer review.</notes><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-10-17T13:18:45.8391468</lastEdited><Created>2022-09-06T15:11:39.4096885</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>M.</firstname><surname>Chandler</surname><order>1</order></author><author><firstname>C.</firstname><surname>Jenkins</surname><order>2</order></author><author><firstname>Sophie</firstname><surname>Shermer</surname><orcid>0000-0002-5530-7750</orcid><order>3</order></author><author><firstname>F. C.</firstname><surname>Langbein</surname><order>4</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2022-10-17T13:18:45.8391468 v2 61076 2022-09-06 MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks 6ebef22eb31eafc75aedcf5bfe487777 0000-0002-5530-7750 Sophie Shermer Sophie Shermer true false 2022-09-06 BGPS Journal Article arXiv 6 9 2019 2019-09-06 10.48550/arXiv.1909.03836 https://arxiv.org/abs/1909.03836 Preprint article before certification by peer review. COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University 2022-10-17T13:18:45.8391468 2022-09-06T15:11:39.4096885 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics M. Chandler 1 C. Jenkins 2 Sophie Shermer 0000-0002-5530-7750 3 F. C. Langbein 4 |
title |
MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks |
spellingShingle |
MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks Sophie Shermer |
title_short |
MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks |
title_full |
MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks |
title_fullStr |
MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks |
title_full_unstemmed |
MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks |
title_sort |
MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks |
author_id_str_mv |
6ebef22eb31eafc75aedcf5bfe487777 |
author_id_fullname_str_mv |
6ebef22eb31eafc75aedcf5bfe487777_***_Sophie Shermer |
author |
Sophie Shermer |
author2 |
M. Chandler C. Jenkins Sophie Shermer F. C. Langbein |
format |
Journal article |
container_title |
arXiv |
publishDate |
2019 |
institution |
Swansea University |
doi_str_mv |
10.48550/arXiv.1909.03836 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics |
url |
https://arxiv.org/abs/1909.03836 |
document_store_str |
0 |
active_str |
0 |
published_date |
2019-09-06T20:27:39Z |
_version_ |
1822072828552282112 |
score |
11.048302 |