No Cover Image

Journal article 486 views

MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks

M. Chandler, C. Jenkins, Sophie Shermer Orcid Logo, F. C. Langbein

arXiv

Swansea University Author: Sophie Shermer Orcid Logo

Full text not available from this repository: check for access using links below.

DOI (Published version): 10.48550/arXiv.1909.03836

Published in: arXiv
Published: 2019
Online Access: https://arxiv.org/abs/1909.03836
URI: https://cronfa.swan.ac.uk/Record/cronfa61076
first_indexed 2022-10-10T16:13:45Z
last_indexed 2023-01-13T19:21:39Z
id cronfa61076
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-10-17T13:18:45.8391468</datestamp><bib-version>v2</bib-version><id>61076</id><entry>2022-09-06</entry><title>MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks</title><swanseaauthors><author><sid>6ebef22eb31eafc75aedcf5bfe487777</sid><ORCID>0000-0002-5530-7750</ORCID><firstname>Sophie</firstname><surname>Shermer</surname><name>Sophie Shermer</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-09-06</date><deptcode>BGPS</deptcode><abstract/><type>Journal Article</type><journal>arXiv</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords/><publishedDay>6</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-09-06</publishedDate><doi>10.48550/arXiv.1909.03836</doi><url>https://arxiv.org/abs/1909.03836</url><notes>Preprint article before certification by peer review.</notes><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-10-17T13:18:45.8391468</lastEdited><Created>2022-09-06T15:11:39.4096885</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>M.</firstname><surname>Chandler</surname><order>1</order></author><author><firstname>C.</firstname><surname>Jenkins</surname><order>2</order></author><author><firstname>Sophie</firstname><surname>Shermer</surname><orcid>0000-0002-5530-7750</orcid><order>3</order></author><author><firstname>F. C.</firstname><surname>Langbein</surname><order>4</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2022-10-17T13:18:45.8391468 v2 61076 2022-09-06 MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks 6ebef22eb31eafc75aedcf5bfe487777 0000-0002-5530-7750 Sophie Shermer Sophie Shermer true false 2022-09-06 BGPS Journal Article arXiv 6 9 2019 2019-09-06 10.48550/arXiv.1909.03836 https://arxiv.org/abs/1909.03836 Preprint article before certification by peer review. COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University 2022-10-17T13:18:45.8391468 2022-09-06T15:11:39.4096885 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics M. Chandler 1 C. Jenkins 2 Sophie Shermer 0000-0002-5530-7750 3 F. C. Langbein 4
title MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks
spellingShingle MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks
Sophie Shermer
title_short MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks
title_full MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks
title_fullStr MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks
title_full_unstemmed MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks
title_sort MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks
author_id_str_mv 6ebef22eb31eafc75aedcf5bfe487777
author_id_fullname_str_mv 6ebef22eb31eafc75aedcf5bfe487777_***_Sophie Shermer
author Sophie Shermer
author2 M. Chandler
C. Jenkins
Sophie Shermer
F. C. Langbein
format Journal article
container_title arXiv
publishDate 2019
institution Swansea University
doi_str_mv 10.48550/arXiv.1909.03836
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
url https://arxiv.org/abs/1909.03836
document_store_str 0
active_str 0
published_date 2019-09-06T20:27:39Z
_version_ 1822072828552282112
score 11.048302