Journal article 401 views 25 downloads
An efficient digital twin based on machine learning SVD autoencoder and generalised latent assimilation for nuclear reactor physics
Helin Gong ,
Sibo Cheng ,
Zhang Chen,
Qing Li,
César Quilodrán-Casas,
Dunhui Xiao ,
Rossella Arcucci
Annals of Nuclear Energy, Volume: 179, Start page: 109431
Swansea University Author: Dunhui Xiao
-
PDF | Accepted Manuscript
©2022 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)
Download (1.55MB)
DOI (Published version): 10.1016/j.anucene.2022.109431
Abstract
An efficient digital twin based on machine learning SVD autoencoder and generalised latent assimilation for nuclear reactor physics
Published in: | Annals of Nuclear Energy |
---|---|
ISSN: | 0306-4549 |
Published: |
Elsevier BV
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa61228 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2022-09-27T15:53:58Z |
---|---|
last_indexed |
2023-01-13T19:21:52Z |
id |
cronfa61228 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>61228</id><entry>2022-09-15</entry><title>An efficient digital twin based on machine learning SVD autoencoder and generalised latent assimilation for nuclear reactor physics</title><swanseaauthors><author><sid>62c69b98cbcdc9142622d4f398fdab97</sid><ORCID>0000-0003-2461-523X</ORCID><firstname>Dunhui</firstname><surname>Xiao</surname><name>Dunhui Xiao</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-09-15</date><deptcode>ACEM</deptcode><abstract/><type>Journal Article</type><journal>Annals of Nuclear Energy</journal><volume>179</volume><journalNumber/><paginationStart>109431</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0306-4549</issnPrint><issnElectronic/><keywords>Operational digital twins; Machine learning; Latent assimilation; SVD-autoencoder; Nuclear reactor physics</keywords><publishedDay>15</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-12-15</publishedDate><doi>10.1016/j.anucene.2022.109431</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>This work is supported by the National Natural Science Foundation of China (Grant No. 11905216, Grant No. 12175220), and the Stability Support Fund for National Defence and Science and Technology on Reactor System Design Technology Laboratory. This research is partially funded by the Leverhulme Centre for Wildfires, Environment and Society through the Leverhulme Trust, Grant No. RC-2018-023. This work is partially supported by the EP/T000414/1 PREdictive Modelling with QuantIfication of UncERtainty for MultiphasE Systems (PREMIERE).</funders><projectreference/><lastEdited>2024-07-17T12:10:12.1024119</lastEdited><Created>2022-09-15T09:41:11.9759667</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Aerospace Engineering</level></path><authors><author><firstname>Helin</firstname><surname>Gong</surname><orcid>0000-0002-4094-6795</orcid><order>1</order></author><author><firstname>Sibo</firstname><surname>Cheng</surname><orcid>0000-0002-8707-2589</orcid><order>2</order></author><author><firstname>Zhang</firstname><surname>Chen</surname><order>3</order></author><author><firstname>Qing</firstname><surname>Li</surname><order>4</order></author><author><firstname>César</firstname><surname>Quilodrán-Casas</surname><order>5</order></author><author><firstname>Dunhui</firstname><surname>Xiao</surname><orcid>0000-0003-2461-523X</orcid><order>6</order></author><author><firstname>Rossella</firstname><surname>Arcucci</surname><order>7</order></author></authors><documents><document><filename>61228__25264__1bd26a6e429348b2bc518f7a731d763d.pdf</filename><originalFilename>61228.pdf</originalFilename><uploaded>2022-09-29T15:30:59.8877382</uploaded><type>Output</type><contentLength>1624400</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2023-09-10T00:00:00.0000000</embargoDate><documentNotes>©2022 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
v2 61228 2022-09-15 An efficient digital twin based on machine learning SVD autoencoder and generalised latent assimilation for nuclear reactor physics 62c69b98cbcdc9142622d4f398fdab97 0000-0003-2461-523X Dunhui Xiao Dunhui Xiao true false 2022-09-15 ACEM Journal Article Annals of Nuclear Energy 179 109431 Elsevier BV 0306-4549 Operational digital twins; Machine learning; Latent assimilation; SVD-autoencoder; Nuclear reactor physics 15 12 2022 2022-12-15 10.1016/j.anucene.2022.109431 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University This work is supported by the National Natural Science Foundation of China (Grant No. 11905216, Grant No. 12175220), and the Stability Support Fund for National Defence and Science and Technology on Reactor System Design Technology Laboratory. This research is partially funded by the Leverhulme Centre for Wildfires, Environment and Society through the Leverhulme Trust, Grant No. RC-2018-023. This work is partially supported by the EP/T000414/1 PREdictive Modelling with QuantIfication of UncERtainty for MultiphasE Systems (PREMIERE). 2024-07-17T12:10:12.1024119 2022-09-15T09:41:11.9759667 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Aerospace Engineering Helin Gong 0000-0002-4094-6795 1 Sibo Cheng 0000-0002-8707-2589 2 Zhang Chen 3 Qing Li 4 César Quilodrán-Casas 5 Dunhui Xiao 0000-0003-2461-523X 6 Rossella Arcucci 7 61228__25264__1bd26a6e429348b2bc518f7a731d763d.pdf 61228.pdf 2022-09-29T15:30:59.8877382 Output 1624400 application/pdf Accepted Manuscript true 2023-09-10T00:00:00.0000000 ©2022 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
An efficient digital twin based on machine learning SVD autoencoder and generalised latent assimilation for nuclear reactor physics |
spellingShingle |
An efficient digital twin based on machine learning SVD autoencoder and generalised latent assimilation for nuclear reactor physics Dunhui Xiao |
title_short |
An efficient digital twin based on machine learning SVD autoencoder and generalised latent assimilation for nuclear reactor physics |
title_full |
An efficient digital twin based on machine learning SVD autoencoder and generalised latent assimilation for nuclear reactor physics |
title_fullStr |
An efficient digital twin based on machine learning SVD autoencoder and generalised latent assimilation for nuclear reactor physics |
title_full_unstemmed |
An efficient digital twin based on machine learning SVD autoencoder and generalised latent assimilation for nuclear reactor physics |
title_sort |
An efficient digital twin based on machine learning SVD autoencoder and generalised latent assimilation for nuclear reactor physics |
author_id_str_mv |
62c69b98cbcdc9142622d4f398fdab97 |
author_id_fullname_str_mv |
62c69b98cbcdc9142622d4f398fdab97_***_Dunhui Xiao |
author |
Dunhui Xiao |
author2 |
Helin Gong Sibo Cheng Zhang Chen Qing Li César Quilodrán-Casas Dunhui Xiao Rossella Arcucci |
format |
Journal article |
container_title |
Annals of Nuclear Energy |
container_volume |
179 |
container_start_page |
109431 |
publishDate |
2022 |
institution |
Swansea University |
issn |
0306-4549 |
doi_str_mv |
10.1016/j.anucene.2022.109431 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Aerospace Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Aerospace Engineering |
document_store_str |
1 |
active_str |
0 |
published_date |
2022-12-15T12:10:11Z |
_version_ |
1804824332116951040 |
score |
11.036706 |