Journal article 22768 views
Federated learning-based vertebral body segmentation
Junxiu Liu,
Xiuhao Liang ,
Rixing Yang,
Yuling Luo,
Hao Lu,
Liangjia Li,
Shunsheng Zhang,
Scott Yang
Engineering Applications of Artificial Intelligence, Volume: 116, Start page: 105451
Swansea University Author: Scott Yang
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1016/j.engappai.2022.105451
Abstract
Federated learning-based vertebral body segmentation
Published in: | Engineering Applications of Artificial Intelligence |
---|---|
ISSN: | 0952-1976 |
Published: |
Elsevier BV
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa61423 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2022-10-25T16:12:04Z |
---|---|
last_indexed |
2023-01-21T04:11:02Z |
id |
cronfa61423 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-01-20T14:33:35.9838121</datestamp><bib-version>v2</bib-version><id>61423</id><entry>2022-10-05</entry><title>Federated learning-based vertebral body segmentation</title><swanseaauthors><author><sid>81dc663ca0e68c60908d35b1d2ec3a9b</sid><ORCID>0000-0002-6618-7483</ORCID><firstname>Scott</firstname><surname>Yang</surname><name>Scott Yang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-10-05</date><deptcode>SCS</deptcode><abstract/><type>Journal Article</type><journal>Engineering Applications of Artificial Intelligence</journal><volume>116</volume><journalNumber/><paginationStart>105451</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0952-1976</issnPrint><issnElectronic/><keywords>Federated learning; Vertebral body segmentation; MRI images</keywords><publishedDay>1</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-11-01</publishedDate><doi>10.1016/j.engappai.2022.105451</doi><url/><notes/><college>COLLEGE NANME</college><department>Computer Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SCS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>This research was partially supported by the National Natural Science Foundation of China under Grant 61976063, the Guangxi Natural Science Foundation under Grant 2022GXNSFFA035028.</funders><projectreference/><lastEdited>2023-01-20T14:33:35.9838121</lastEdited><Created>2022-10-05T08:39:52.1536002</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Junxiu</firstname><surname>Liu</surname><order>1</order></author><author><firstname>Xiuhao</firstname><surname>Liang</surname><orcid>0000-0002-6557-1627</orcid><order>2</order></author><author><firstname>Rixing</firstname><surname>Yang</surname><order>3</order></author><author><firstname>Yuling</firstname><surname>Luo</surname><order>4</order></author><author><firstname>Hao</firstname><surname>Lu</surname><order>5</order></author><author><firstname>Liangjia</firstname><surname>Li</surname><order>6</order></author><author><firstname>Shunsheng</firstname><surname>Zhang</surname><order>7</order></author><author><firstname>Scott</firstname><surname>Yang</surname><orcid>0000-0002-6618-7483</orcid><order>8</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2023-01-20T14:33:35.9838121 v2 61423 2022-10-05 Federated learning-based vertebral body segmentation 81dc663ca0e68c60908d35b1d2ec3a9b 0000-0002-6618-7483 Scott Yang Scott Yang true false 2022-10-05 SCS Journal Article Engineering Applications of Artificial Intelligence 116 105451 Elsevier BV 0952-1976 Federated learning; Vertebral body segmentation; MRI images 1 11 2022 2022-11-01 10.1016/j.engappai.2022.105451 COLLEGE NANME Computer Science COLLEGE CODE SCS Swansea University This research was partially supported by the National Natural Science Foundation of China under Grant 61976063, the Guangxi Natural Science Foundation under Grant 2022GXNSFFA035028. 2023-01-20T14:33:35.9838121 2022-10-05T08:39:52.1536002 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Junxiu Liu 1 Xiuhao Liang 0000-0002-6557-1627 2 Rixing Yang 3 Yuling Luo 4 Hao Lu 5 Liangjia Li 6 Shunsheng Zhang 7 Scott Yang 0000-0002-6618-7483 8 |
title |
Federated learning-based vertebral body segmentation |
spellingShingle |
Federated learning-based vertebral body segmentation Scott Yang |
title_short |
Federated learning-based vertebral body segmentation |
title_full |
Federated learning-based vertebral body segmentation |
title_fullStr |
Federated learning-based vertebral body segmentation |
title_full_unstemmed |
Federated learning-based vertebral body segmentation |
title_sort |
Federated learning-based vertebral body segmentation |
author_id_str_mv |
81dc663ca0e68c60908d35b1d2ec3a9b |
author_id_fullname_str_mv |
81dc663ca0e68c60908d35b1d2ec3a9b_***_Scott Yang |
author |
Scott Yang |
author2 |
Junxiu Liu Xiuhao Liang Rixing Yang Yuling Luo Hao Lu Liangjia Li Shunsheng Zhang Scott Yang |
format |
Journal article |
container_title |
Engineering Applications of Artificial Intelligence |
container_volume |
116 |
container_start_page |
105451 |
publishDate |
2022 |
institution |
Swansea University |
issn |
0952-1976 |
doi_str_mv |
10.1016/j.engappai.2022.105451 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
0 |
active_str |
0 |
published_date |
2022-11-01T04:20:14Z |
_version_ |
1763754340531568640 |
score |
11.035634 |