No Cover Image

Journal article 451 views 81 downloads

The Use of Barriers to Limit the Spread of Aquatic Invasive Animal Species: A Global Review

Peter E. Jones, Jeroen S. Tummers, Shams M. Galib, Darragh J. Woodford, John B. Hume, Luiz G. M. Silva, Raul R. Braga, Carlos Garcia De Leaniz Orcid Logo, Jean R. S. Vitule, Jelger E. Herder, Martyn C. Lucas

Frontiers in Ecology and Evolution, Volume: 9

Swansea University Author: Carlos Garcia De Leaniz Orcid Logo

  • 61494_VoR.pdf

    PDF | Version of Record

    © 2021 Jones, Tummers, Galib, Woodford, Hume, Silva, Braga, Garcia de Leaniz, Vitule, Herder and Lucas. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).

    Download (1.46MB)

Abstract

Aquatic invasive species (AIS) are one of the principal threats to freshwater biodiversity. Exclusion barriers are increasingly being used as a management strategy to control the spread of AIS. However, exclusion barriers can also impact native organisms and their effectiveness is likely to be conte...

Full description

Published in: Frontiers in Ecology and Evolution
ISSN: 2296-701X
Published: Frontiers Media SA 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa61494
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Aquatic invasive species (AIS) are one of the principal threats to freshwater biodiversity. Exclusion barriers are increasingly being used as a management strategy to control the spread of AIS. However, exclusion barriers can also impact native organisms and their effectiveness is likely to be context dependent. We conducted a quantitative literature review to evaluate the use of barriers to control animal AIS in freshwater ecosystems worldwide. The quantitative aspect of the review was supplemented by case studies that describe some of the challenges, successes, and opportunities for the use of the use of AIS exclusion barriers globally. Barriers have been used since the 1950s to control the spread of AIS, but effort has been increasing since 2005 (80% of studies) and an increasingly diverse range of AIS taxa are now targeted in a wide range of habitat types. The global use of AIS barriers has been concentrated in North America (74% of studies), Australasia (11%), and Europe (10%). Physical barriers (e.g., weirs, exclusion screens, and velocity barriers) have been most widely used (47%), followed by electric (27%) and chemical barriers (12%). Fish were the most targeted taxa (86%), followed by crustaceans (10%), molluscs (3%) and amphibians (1%). Most studies have been moderately successful in limiting the passage of AIS, with 86% of the barriers tested deterring >70% of individuals. However, only 25% of studies evaluated barrier impacts on native species, and development of selective passage is still in its infancy. Most studies have been too short (47% < 1 year, 87% < 5 years) to detect ecological impacts or have failed to use robust before-after-control-impact (BACI) study designs (only 5%). Hence, more effective monitoring is required to assess the long-term effectiveness of exclusion barriers as an AIS management tool. Our global case studies highlight the pressing need for AIS control in many ecoregions, and exclusion barriers have the potential to become an effective tool in some situations. However, the design and operation of exclusion barriers must be refined to deliver selective passage of native fauna, and exclusion barriers should only be used sparingly as part of a wider integrated management strategy.
Keywords: selective fragmentation, isolation management, intentional fragmentation, selective passage, nonnative species, alien species, introduced species, exclusion barrier
College: Faculty of Science and Engineering
Funders: PJ, JT, CGL, and ML were supported by the European Union project AMBER (Adaptive Management of Barriers in European Rivers; https://amber.international/), which received funding from the EU Horizon 2020 Research and Innovation Programme under grant agreement No. 689682. SG was supported by a Commonwealth Scholarship from the UK government. DW was supported by National Research Foundation incentive funding (Grant 103581).