Journal article 456 views 67 downloads
Totalising Partial Algebras
Transmathematica, Volume: 2022, Pages: 1 - 22
Swansea University Author: John Tucker
-
PDF | Version of Record
Copyright 2022 Jan Aldert Bergstra, John V. Tucker. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Download (341.1KB)
DOI (Published version): 10.36285/tm.57
Abstract
We will examine totalising a partial operation in a general algebra by using an absorbtive element, bottom, such as an error flag. We then focus on the simplest example of a partial operation, namely subtraction on the natural numbers: n - m is undefined whenever n < m. We examine the use of bott...
Published in: | Transmathematica |
---|---|
ISSN: | 2632-9212 |
Published: |
Reading
Transmathematica
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa61536 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2022-10-11T21:09:29Z |
---|---|
last_indexed |
2023-01-13T19:22:20Z |
id |
cronfa61536 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-10-28T11:24:08.9859826</datestamp><bib-version>v2</bib-version><id>61536</id><entry>2022-10-11</entry><title>Totalising Partial Algebras</title><swanseaauthors><author><sid>431b3060563ed44cc68c7056ece2f85e</sid><ORCID>0000-0003-4689-8760</ORCID><firstname>John</firstname><surname>Tucker</surname><name>John Tucker</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-10-11</date><deptcode>SCS</deptcode><abstract>We will examine totalising a partial operation in a general algebra by using an absorbtive element, bottom, such as an error flag. We then focus on the simplest example of a partial operation, namely subtraction on the natural numbers: n - m is undefined whenever n < m. We examine the use of bottom in algebraic structures for the natural numbers, especially semigroups and semirings. We axiomatise this totalisation process and introduce the algebraic concept of a team, being an additive cancellative semigroup with totalised subtraction. Also, with the natural numbers in mind, we introduce the property of being generated by an iterative function, which we call a splinter. We prove a number of theorems about the algebraic specification of datatypes of natural numbers.</abstract><type>Journal Article</type><journal>Transmathematica</journal><volume>2022</volume><journalNumber/><paginationStart>1</paginationStart><paginationEnd>22</paginationEnd><publisher>Transmathematica</publisher><placeOfPublication>Reading</placeOfPublication><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2632-9212</issnElectronic><keywords>partiality, meadows, teams, splinters, absorptive elements</keywords><publishedDay>28</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-03-28</publishedDate><doi>10.36285/tm.57</doi><url/><notes/><college>COLLEGE NANME</college><department>Computer Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SCS</DepartmentCode><institution>Swansea University</institution><apcterm>Other</apcterm><funders/><projectreference/><lastEdited>2022-10-28T11:24:08.9859826</lastEdited><Created>2022-10-11T21:58:41.8223782</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Jan Aldert</firstname><surname>Bergstra</surname><order>1</order></author><author><firstname>John</firstname><surname>Tucker</surname><orcid>0000-0003-4689-8760</orcid><order>2</order></author></authors><documents><document><filename>61536__25418__383e00de73e14eb5af53cdee7a057b55.pdf</filename><originalFilename>Totalising Partial Algebras-Teams and Splinters.pdf</originalFilename><uploaded>2022-10-11T22:09:04.5785956</uploaded><type>Output</type><contentLength>349288</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Copyright 2022 Jan Aldert Bergstra, John V. Tucker. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-sa/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-10-28T11:24:08.9859826 v2 61536 2022-10-11 Totalising Partial Algebras 431b3060563ed44cc68c7056ece2f85e 0000-0003-4689-8760 John Tucker John Tucker true false 2022-10-11 SCS We will examine totalising a partial operation in a general algebra by using an absorbtive element, bottom, such as an error flag. We then focus on the simplest example of a partial operation, namely subtraction on the natural numbers: n - m is undefined whenever n < m. We examine the use of bottom in algebraic structures for the natural numbers, especially semigroups and semirings. We axiomatise this totalisation process and introduce the algebraic concept of a team, being an additive cancellative semigroup with totalised subtraction. Also, with the natural numbers in mind, we introduce the property of being generated by an iterative function, which we call a splinter. We prove a number of theorems about the algebraic specification of datatypes of natural numbers. Journal Article Transmathematica 2022 1 22 Transmathematica Reading 2632-9212 partiality, meadows, teams, splinters, absorptive elements 28 3 2022 2022-03-28 10.36285/tm.57 COLLEGE NANME Computer Science COLLEGE CODE SCS Swansea University Other 2022-10-28T11:24:08.9859826 2022-10-11T21:58:41.8223782 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Jan Aldert Bergstra 1 John Tucker 0000-0003-4689-8760 2 61536__25418__383e00de73e14eb5af53cdee7a057b55.pdf Totalising Partial Algebras-Teams and Splinters.pdf 2022-10-11T22:09:04.5785956 Output 349288 application/pdf Version of Record true Copyright 2022 Jan Aldert Bergstra, John V. Tucker. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. true eng https://creativecommons.org/licenses/by-sa/4.0/ |
title |
Totalising Partial Algebras |
spellingShingle |
Totalising Partial Algebras John Tucker |
title_short |
Totalising Partial Algebras |
title_full |
Totalising Partial Algebras |
title_fullStr |
Totalising Partial Algebras |
title_full_unstemmed |
Totalising Partial Algebras |
title_sort |
Totalising Partial Algebras |
author_id_str_mv |
431b3060563ed44cc68c7056ece2f85e |
author_id_fullname_str_mv |
431b3060563ed44cc68c7056ece2f85e_***_John Tucker |
author |
John Tucker |
author2 |
Jan Aldert Bergstra John Tucker |
format |
Journal article |
container_title |
Transmathematica |
container_volume |
2022 |
container_start_page |
1 |
publishDate |
2022 |
institution |
Swansea University |
issn |
2632-9212 |
doi_str_mv |
10.36285/tm.57 |
publisher |
Transmathematica |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
description |
We will examine totalising a partial operation in a general algebra by using an absorbtive element, bottom, such as an error flag. We then focus on the simplest example of a partial operation, namely subtraction on the natural numbers: n - m is undefined whenever n < m. We examine the use of bottom in algebraic structures for the natural numbers, especially semigroups and semirings. We axiomatise this totalisation process and introduce the algebraic concept of a team, being an additive cancellative semigroup with totalised subtraction. Also, with the natural numbers in mind, we introduce the property of being generated by an iterative function, which we call a splinter. We prove a number of theorems about the algebraic specification of datatypes of natural numbers. |
published_date |
2022-03-28T04:20:25Z |
_version_ |
1763754351943221248 |
score |
11.035634 |