Journal article 581 views
MobileCrack: Object Classification in Asphalt Pavements Using an Adaptive Lightweight Deep Learning
Journal of Transportation Engineering, Part B: Pavements, Volume: 147, Issue: 1, Start page: 04020092
Swansea University Author: Yue Hou
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1061/jpeodx.0000245
Abstract
MobileCrack: Object Classification in Asphalt Pavements Using an Adaptive Lightweight Deep Learning
Published in: | Journal of Transportation Engineering, Part B: Pavements |
---|---|
ISSN: | 2573-5438 2573-5438 |
Published: |
American Society of Civil Engineers (ASCE)
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa61800 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2022-11-28T15:43:41Z |
---|---|
last_indexed |
2023-01-13T19:22:48Z |
id |
cronfa61800 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-11-28T15:44:10.7924006</datestamp><bib-version>v2</bib-version><id>61800</id><entry>2022-11-07</entry><title>MobileCrack: Object Classification in Asphalt Pavements Using an Adaptive Lightweight Deep Learning</title><swanseaauthors><author><sid>92bf566c65343cb3ee04ad963eacf31b</sid><firstname>Yue</firstname><surname>Hou</surname><name>Yue Hou</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-11-07</date><deptcode>CIVL</deptcode><abstract/><type>Journal Article</type><journal>Journal of Transportation Engineering, Part B: Pavements</journal><volume>147</volume><journalNumber>1</journalNumber><paginationStart>04020092</paginationStart><paginationEnd/><publisher>American Society of Civil Engineers (ASCE)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2573-5438</issnPrint><issnElectronic>2573-5438</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-03-01</publishedDate><doi>10.1061/jpeodx.0000245</doi><url/><notes/><college>COLLEGE NANME</college><department>Civil Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CIVL</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-11-28T15:44:10.7924006</lastEdited><Created>2022-11-07T19:26:48.3535777</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Yue</firstname><surname>Hou</surname><order>1</order></author><author><firstname>Qiuhan</firstname><surname>Li</surname><order>2</order></author><author><firstname>Qiang</firstname><surname>Han</surname><order>3</order></author><author><firstname>Bo</firstname><surname>Peng</surname><order>4</order></author><author><firstname>Linbing</firstname><surname>Wang</surname><order>5</order></author><author><firstname>Xingyu</firstname><surname>Gu</surname><order>6</order></author><author><firstname>Dawei</firstname><surname>Wang</surname><orcid>0000-0003-1064-3715</orcid><order>7</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2022-11-28T15:44:10.7924006 v2 61800 2022-11-07 MobileCrack: Object Classification in Asphalt Pavements Using an Adaptive Lightweight Deep Learning 92bf566c65343cb3ee04ad963eacf31b Yue Hou Yue Hou true false 2022-11-07 CIVL Journal Article Journal of Transportation Engineering, Part B: Pavements 147 1 04020092 American Society of Civil Engineers (ASCE) 2573-5438 2573-5438 1 3 2021 2021-03-01 10.1061/jpeodx.0000245 COLLEGE NANME Civil Engineering COLLEGE CODE CIVL Swansea University 2022-11-28T15:44:10.7924006 2022-11-07T19:26:48.3535777 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Yue Hou 1 Qiuhan Li 2 Qiang Han 3 Bo Peng 4 Linbing Wang 5 Xingyu Gu 6 Dawei Wang 0000-0003-1064-3715 7 |
title |
MobileCrack: Object Classification in Asphalt Pavements Using an Adaptive Lightweight Deep Learning |
spellingShingle |
MobileCrack: Object Classification in Asphalt Pavements Using an Adaptive Lightweight Deep Learning Yue Hou |
title_short |
MobileCrack: Object Classification in Asphalt Pavements Using an Adaptive Lightweight Deep Learning |
title_full |
MobileCrack: Object Classification in Asphalt Pavements Using an Adaptive Lightweight Deep Learning |
title_fullStr |
MobileCrack: Object Classification in Asphalt Pavements Using an Adaptive Lightweight Deep Learning |
title_full_unstemmed |
MobileCrack: Object Classification in Asphalt Pavements Using an Adaptive Lightweight Deep Learning |
title_sort |
MobileCrack: Object Classification in Asphalt Pavements Using an Adaptive Lightweight Deep Learning |
author_id_str_mv |
92bf566c65343cb3ee04ad963eacf31b |
author_id_fullname_str_mv |
92bf566c65343cb3ee04ad963eacf31b_***_Yue Hou |
author |
Yue Hou |
author2 |
Yue Hou Qiuhan Li Qiang Han Bo Peng Linbing Wang Xingyu Gu Dawei Wang |
format |
Journal article |
container_title |
Journal of Transportation Engineering, Part B: Pavements |
container_volume |
147 |
container_issue |
1 |
container_start_page |
04020092 |
publishDate |
2021 |
institution |
Swansea University |
issn |
2573-5438 2573-5438 |
doi_str_mv |
10.1061/jpeodx.0000245 |
publisher |
American Society of Civil Engineers (ASCE) |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
document_store_str |
0 |
active_str |
0 |
published_date |
2021-03-01T04:20:54Z |
_version_ |
1763754381827637248 |
score |
11.036706 |