Conference Paper/Proceeding/Abstract 988 views
Comparison of Corrupted Sensor Data Detection Methods in Detecting Stealthy Attacks on Cyber-Physical Systems
2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing (PRDC)
Swansea University Author:
Giedre Sabaliauskaite
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1109/prdc.2017.47
Abstract
Comparison of Corrupted Sensor Data Detection Methods in Detecting Stealthy Attacks on Cyber-Physical Systems
| Published in: | 2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing (PRDC) |
|---|---|
| ISBN: | 978-1-5090-5653-8 978-1-5090-5652-1 |
| ISSN: | 2473-3105 |
| Published: |
IEEE
2017
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa61850 |
| first_indexed |
2022-12-01T13:28:33Z |
|---|---|
| last_indexed |
2023-01-13T19:22:53Z |
| id |
cronfa61850 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-12-01T13:28:41.0687403</datestamp><bib-version>v2</bib-version><id>61850</id><entry>2022-11-09</entry><title>Comparison of Corrupted Sensor Data Detection Methods in Detecting Stealthy Attacks on Cyber-Physical Systems</title><swanseaauthors><author><sid>6a674e2dbda3ec5f20599ce38199a7c3</sid><ORCID>0000-0003-1183-7001</ORCID><firstname>Giedre</firstname><surname>Sabaliauskaite</surname><name>Giedre Sabaliauskaite</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-11-09</date><deptcode>MACS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing (PRDC)</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher>IEEE</publisher><placeOfPublication/><isbnPrint>978-1-5090-5653-8</isbnPrint><isbnElectronic>978-1-5090-5652-1</isbnElectronic><issnPrint/><issnElectronic>2473-3105</issnElectronic><keywords/><publishedDay>8</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-05-08</publishedDate><doi>10.1109/prdc.2017.47</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-12-01T13:28:41.0687403</lastEdited><Created>2022-11-09T22:48:25.7799162</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Giedre</firstname><surname>Sabaliauskaite</surname><orcid>0000-0003-1183-7001</orcid><order>1</order></author><author><firstname>Geok See</firstname><surname>Ng</surname><order>2</order></author><author><firstname>Justin</firstname><surname>Ruths</surname><order>3</order></author><author><firstname>Aditya</firstname><surname>Mathur</surname><order>4</order></author></authors><documents/><OutputDurs/></rfc1807> |
| spelling |
2022-12-01T13:28:41.0687403 v2 61850 2022-11-09 Comparison of Corrupted Sensor Data Detection Methods in Detecting Stealthy Attacks on Cyber-Physical Systems 6a674e2dbda3ec5f20599ce38199a7c3 0000-0003-1183-7001 Giedre Sabaliauskaite Giedre Sabaliauskaite true false 2022-11-09 MACS Conference Paper/Proceeding/Abstract 2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing (PRDC) IEEE 978-1-5090-5653-8 978-1-5090-5652-1 2473-3105 8 5 2017 2017-05-08 10.1109/prdc.2017.47 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2022-12-01T13:28:41.0687403 2022-11-09T22:48:25.7799162 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Giedre Sabaliauskaite 0000-0003-1183-7001 1 Geok See Ng 2 Justin Ruths 3 Aditya Mathur 4 |
| title |
Comparison of Corrupted Sensor Data Detection Methods in Detecting Stealthy Attacks on Cyber-Physical Systems |
| spellingShingle |
Comparison of Corrupted Sensor Data Detection Methods in Detecting Stealthy Attacks on Cyber-Physical Systems Giedre Sabaliauskaite |
| title_short |
Comparison of Corrupted Sensor Data Detection Methods in Detecting Stealthy Attacks on Cyber-Physical Systems |
| title_full |
Comparison of Corrupted Sensor Data Detection Methods in Detecting Stealthy Attacks on Cyber-Physical Systems |
| title_fullStr |
Comparison of Corrupted Sensor Data Detection Methods in Detecting Stealthy Attacks on Cyber-Physical Systems |
| title_full_unstemmed |
Comparison of Corrupted Sensor Data Detection Methods in Detecting Stealthy Attacks on Cyber-Physical Systems |
| title_sort |
Comparison of Corrupted Sensor Data Detection Methods in Detecting Stealthy Attacks on Cyber-Physical Systems |
| author_id_str_mv |
6a674e2dbda3ec5f20599ce38199a7c3 |
| author_id_fullname_str_mv |
6a674e2dbda3ec5f20599ce38199a7c3_***_Giedre Sabaliauskaite |
| author |
Giedre Sabaliauskaite |
| author2 |
Giedre Sabaliauskaite Geok See Ng Justin Ruths Aditya Mathur |
| format |
Conference Paper/Proceeding/Abstract |
| container_title |
2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing (PRDC) |
| publishDate |
2017 |
| institution |
Swansea University |
| isbn |
978-1-5090-5653-8 978-1-5090-5652-1 |
| issn |
2473-3105 |
| doi_str_mv |
10.1109/prdc.2017.47 |
| publisher |
IEEE |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
| document_store_str |
0 |
| active_str |
0 |
| published_date |
2017-05-08T17:15:37Z |
| _version_ |
1850689388675072000 |
| score |
11.08899 |

