Journal article 501 views 152 downloads
Suppressing Interfacial Recombination with a Strong‐Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells
Advanced Energy Materials, Volume: 12, Issue: 48, Start page: 2202868
Swansea University Authors: James McGettrick , Trystan Watson
-
PDF | Version of Record
© 2022 The Authors.This is an open access article under the terms of the Creative Commons Attribution License
Download (3.73MB)
DOI (Published version): 10.1002/aenm.202202868
Abstract
Successful manipulation of halide perovskite surfaces is typically achieved via the interactions between modulators and perovskites. Herein, it is demonstrated that a strong-interaction surface modulator is beneficial to reduce interfacial recombination losses in inverted (p-i-n) perovskite solar ce...
Published in: | Advanced Energy Materials |
---|---|
ISSN: | 1614-6832 1614-6840 |
Published: |
Wiley
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa61965 |
first_indexed |
2022-11-21T10:14:15Z |
---|---|
last_indexed |
2023-01-13T19:23:06Z |
id |
cronfa61965 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-12-28T15:57:16.2138337</datestamp><bib-version>v2</bib-version><id>61965</id><entry>2022-11-21</entry><title>Suppressing Interfacial Recombination with a Strong‐Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells</title><swanseaauthors><author><sid>bdbacc591e2de05180e0fd3cc13fa480</sid><ORCID>0000-0002-7719-2958</ORCID><firstname>James</firstname><surname>McGettrick</surname><name>James McGettrick</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-11-21</date><deptcode>EAAS</deptcode><abstract>Successful manipulation of halide perovskite surfaces is typically achieved via the interactions between modulators and perovskites. Herein, it is demonstrated that a strong-interaction surface modulator is beneficial to reduce interfacial recombination losses in inverted (p-i-n) perovskite solar cells (IPSCs). Two organic ammonium salts are investigated, consisting of 4-hydroxyphenethylammonium iodide and 2-thiopheneethylammonium iodide (2-TEAI). Without thermal annealing, these two modulators can recover the photoluminescence quantum yield of the neat perovskite film in contact with fullerene electron transport layer (ETL). Compared to the hydroxyl-functionalized phenethylammonium moiety, the thienylammonium facilitates the formation of a quasi-2D structure onto the perovskite. Density functional theory and quasi-Fermi level splitting calculations reveal that the 2-TEAI has a stronger interaction with the perovskite surface, contributing to more suppressed non-radiative recombination at the perovskite/ETL interface and improved open-circuit voltage (VOC) of the fabricated IPSCs. As a result, the VOC increases from 1.11 to 1.20 V (based on a perovskite bandgap of 1.63 eV), yielding a power conversion efficiency (PCE) from ≈20% to 21.9% (stabilized PCE of 21.3%, the highest reported PCEs for IPSCs employing poly[N,N′′-bis(4-butylphenyl)-N,N′′-bis(phenyl)benzidine] as the hole transport layer, alongside the enhanced operational and shelf-life stability for unencapsulated devices.</abstract><type>Journal Article</type><journal>Advanced Energy Materials</journal><volume>12</volume><journalNumber>48</journalNumber><paginationStart>2202868</paginationStart><paginationEnd/><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1614-6832</issnPrint><issnElectronic>1614-6840</issnElectronic><keywords>inverted perovskite solar cells; molecular design, ligands; non-radiative recombination; surface manipulation</keywords><publishedDay>22</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-12-22</publishedDate><doi>10.1002/aenm.202202868</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>EPSRC. Grant Number: EP/V027131/1
Newton Advanced Fellowship. Grant Number: 192097
China Scholarship Council. Grant Numbers: 201706020158, 760949
Equal Opportunities Foundation Hong Kong
Fujian Key Laboratory of Photoelectric Functional Materials. Grant Number: FJPFM-201902
University of Surrey
DCSA3 scholarship
EPSRC SPECIFIC IKC. Grant Number: EP/N020863/1
UK EPSRC. Grant Number: EP/S009213/1
Royal Society
Engineering and Physical Sciences Research Council. Grant Numbers: EP/R023980/1, EP/V027131/1
European Research Council
European Union's Horizon 2020. Grant Number: 756962
Royal Society
Tata Group. Grant Number: UF150033
State Key Laboratory of Advanced Materials and Electronic Components, Guangdong Fenghua Advanced Technology Holding. Grant Number: 201901
Key Technologies Research and Development Program. Grant Number: 2019YFB1503500
European Commission H2020 CORNET program. Grant Number: 760949
Chinese Government Scholarship. Grant Number: 201808370197</funders><projectreference/><lastEdited>2022-12-28T15:57:16.2138337</lastEdited><Created>2022-11-21T10:09:31.1828890</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Bowei</firstname><surname>Li</surname><orcid>0000-0002-8647-4068</orcid><order>1</order></author><author><firstname>Jun</firstname><surname>Deng</surname><order>2</order></author><author><firstname>Joel A.</firstname><surname>Smith</surname><order>3</order></author><author><firstname>Pietro</firstname><surname>Caprioglio</surname><order>4</order></author><author><firstname>Kangyu</firstname><surname>Ji</surname><order>5</order></author><author><firstname>Deying</firstname><surname>Luo</surname><order>6</order></author><author><firstname>James</firstname><surname>McGettrick</surname><orcid>0000-0002-7719-2958</orcid><order>7</order></author><author><firstname>K. D. G. Imalka</firstname><surname>Jayawardena</surname><order>8</order></author><author><firstname>Rachel C.</firstname><surname>Kilbride</surname><order>9</order></author><author><firstname>Aobo</firstname><surname>Ren</surname><order>10</order></author><author><firstname>Steven</firstname><surname>Hinder</surname><order>11</order></author><author><firstname>Jinxin</firstname><surname>Bi</surname><order>12</order></author><author><firstname>Thomas</firstname><surname>Webb</surname><order>13</order></author><author><firstname>Igor</firstname><surname>Marko</surname><order>14</order></author><author><firstname>Xueping</firstname><surname>Liu</surname><order>15</order></author><author><firstname>Yuren</firstname><surname>Xiang</surname><order>16</order></author><author><firstname>Josh</firstname><surname>Reding</surname><order>17</order></author><author><firstname>Hui</firstname><surname>Li</surname><order>18</order></author><author><firstname>Shixuan</firstname><surname>Du</surname><order>19</order></author><author><firstname>David G.</firstname><surname>Lidzey</surname><order>20</order></author><author><firstname>Samuel D.</firstname><surname>Stranks</surname><order>21</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>22</order></author><author><firstname>Stephen</firstname><surname>Sweeney</surname><order>23</order></author><author><firstname>Henry J.</firstname><surname>Snaith</surname><order>24</order></author><author><firstname>S. Ravi P.</firstname><surname>Silva</surname><order>25</order></author><author><firstname>Wei</firstname><surname>Zhang</surname><orcid>0000-0002-2678-8372</orcid><order>26</order></author></authors><documents><document><filename>61965__25849__3baf22a7bd93412a8c01b6d30d7afdbb.pdf</filename><originalFilename>61965.pdf</originalFilename><uploaded>2022-11-21T10:13:08.0327278</uploaded><type>Output</type><contentLength>3914540</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2022 The Authors.This is an open access article under the terms of the Creative Commons Attribution License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-12-28T15:57:16.2138337 v2 61965 2022-11-21 Suppressing Interfacial Recombination with a Strong‐Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells bdbacc591e2de05180e0fd3cc13fa480 0000-0002-7719-2958 James McGettrick James McGettrick true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 2022-11-21 EAAS Successful manipulation of halide perovskite surfaces is typically achieved via the interactions between modulators and perovskites. Herein, it is demonstrated that a strong-interaction surface modulator is beneficial to reduce interfacial recombination losses in inverted (p-i-n) perovskite solar cells (IPSCs). Two organic ammonium salts are investigated, consisting of 4-hydroxyphenethylammonium iodide and 2-thiopheneethylammonium iodide (2-TEAI). Without thermal annealing, these two modulators can recover the photoluminescence quantum yield of the neat perovskite film in contact with fullerene electron transport layer (ETL). Compared to the hydroxyl-functionalized phenethylammonium moiety, the thienylammonium facilitates the formation of a quasi-2D structure onto the perovskite. Density functional theory and quasi-Fermi level splitting calculations reveal that the 2-TEAI has a stronger interaction with the perovskite surface, contributing to more suppressed non-radiative recombination at the perovskite/ETL interface and improved open-circuit voltage (VOC) of the fabricated IPSCs. As a result, the VOC increases from 1.11 to 1.20 V (based on a perovskite bandgap of 1.63 eV), yielding a power conversion efficiency (PCE) from ≈20% to 21.9% (stabilized PCE of 21.3%, the highest reported PCEs for IPSCs employing poly[N,N′′-bis(4-butylphenyl)-N,N′′-bis(phenyl)benzidine] as the hole transport layer, alongside the enhanced operational and shelf-life stability for unencapsulated devices. Journal Article Advanced Energy Materials 12 48 2202868 Wiley 1614-6832 1614-6840 inverted perovskite solar cells; molecular design, ligands; non-radiative recombination; surface manipulation 22 12 2022 2022-12-22 10.1002/aenm.202202868 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University EPSRC. Grant Number: EP/V027131/1 Newton Advanced Fellowship. Grant Number: 192097 China Scholarship Council. Grant Numbers: 201706020158, 760949 Equal Opportunities Foundation Hong Kong Fujian Key Laboratory of Photoelectric Functional Materials. Grant Number: FJPFM-201902 University of Surrey DCSA3 scholarship EPSRC SPECIFIC IKC. Grant Number: EP/N020863/1 UK EPSRC. Grant Number: EP/S009213/1 Royal Society Engineering and Physical Sciences Research Council. Grant Numbers: EP/R023980/1, EP/V027131/1 European Research Council European Union's Horizon 2020. Grant Number: 756962 Royal Society Tata Group. Grant Number: UF150033 State Key Laboratory of Advanced Materials and Electronic Components, Guangdong Fenghua Advanced Technology Holding. Grant Number: 201901 Key Technologies Research and Development Program. Grant Number: 2019YFB1503500 European Commission H2020 CORNET program. Grant Number: 760949 Chinese Government Scholarship. Grant Number: 201808370197 2022-12-28T15:57:16.2138337 2022-11-21T10:09:31.1828890 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Bowei Li 0000-0002-8647-4068 1 Jun Deng 2 Joel A. Smith 3 Pietro Caprioglio 4 Kangyu Ji 5 Deying Luo 6 James McGettrick 0000-0002-7719-2958 7 K. D. G. Imalka Jayawardena 8 Rachel C. Kilbride 9 Aobo Ren 10 Steven Hinder 11 Jinxin Bi 12 Thomas Webb 13 Igor Marko 14 Xueping Liu 15 Yuren Xiang 16 Josh Reding 17 Hui Li 18 Shixuan Du 19 David G. Lidzey 20 Samuel D. Stranks 21 Trystan Watson 0000-0002-8015-1436 22 Stephen Sweeney 23 Henry J. Snaith 24 S. Ravi P. Silva 25 Wei Zhang 0000-0002-2678-8372 26 61965__25849__3baf22a7bd93412a8c01b6d30d7afdbb.pdf 61965.pdf 2022-11-21T10:13:08.0327278 Output 3914540 application/pdf Version of Record true © 2022 The Authors.This is an open access article under the terms of the Creative Commons Attribution License true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Suppressing Interfacial Recombination with a Strong‐Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells |
spellingShingle |
Suppressing Interfacial Recombination with a Strong‐Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells James McGettrick Trystan Watson |
title_short |
Suppressing Interfacial Recombination with a Strong‐Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells |
title_full |
Suppressing Interfacial Recombination with a Strong‐Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells |
title_fullStr |
Suppressing Interfacial Recombination with a Strong‐Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells |
title_full_unstemmed |
Suppressing Interfacial Recombination with a Strong‐Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells |
title_sort |
Suppressing Interfacial Recombination with a Strong‐Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells |
author_id_str_mv |
bdbacc591e2de05180e0fd3cc13fa480 a210327b52472cfe8df9b8108d661457 |
author_id_fullname_str_mv |
bdbacc591e2de05180e0fd3cc13fa480_***_James McGettrick a210327b52472cfe8df9b8108d661457_***_Trystan Watson |
author |
James McGettrick Trystan Watson |
author2 |
Bowei Li Jun Deng Joel A. Smith Pietro Caprioglio Kangyu Ji Deying Luo James McGettrick K. D. G. Imalka Jayawardena Rachel C. Kilbride Aobo Ren Steven Hinder Jinxin Bi Thomas Webb Igor Marko Xueping Liu Yuren Xiang Josh Reding Hui Li Shixuan Du David G. Lidzey Samuel D. Stranks Trystan Watson Stephen Sweeney Henry J. Snaith S. Ravi P. Silva Wei Zhang |
format |
Journal article |
container_title |
Advanced Energy Materials |
container_volume |
12 |
container_issue |
48 |
container_start_page |
2202868 |
publishDate |
2022 |
institution |
Swansea University |
issn |
1614-6832 1614-6840 |
doi_str_mv |
10.1002/aenm.202202868 |
publisher |
Wiley |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Successful manipulation of halide perovskite surfaces is typically achieved via the interactions between modulators and perovskites. Herein, it is demonstrated that a strong-interaction surface modulator is beneficial to reduce interfacial recombination losses in inverted (p-i-n) perovskite solar cells (IPSCs). Two organic ammonium salts are investigated, consisting of 4-hydroxyphenethylammonium iodide and 2-thiopheneethylammonium iodide (2-TEAI). Without thermal annealing, these two modulators can recover the photoluminescence quantum yield of the neat perovskite film in contact with fullerene electron transport layer (ETL). Compared to the hydroxyl-functionalized phenethylammonium moiety, the thienylammonium facilitates the formation of a quasi-2D structure onto the perovskite. Density functional theory and quasi-Fermi level splitting calculations reveal that the 2-TEAI has a stronger interaction with the perovskite surface, contributing to more suppressed non-radiative recombination at the perovskite/ETL interface and improved open-circuit voltage (VOC) of the fabricated IPSCs. As a result, the VOC increases from 1.11 to 1.20 V (based on a perovskite bandgap of 1.63 eV), yielding a power conversion efficiency (PCE) from ≈20% to 21.9% (stabilized PCE of 21.3%, the highest reported PCEs for IPSCs employing poly[N,N′′-bis(4-butylphenyl)-N,N′′-bis(phenyl)benzidine] as the hole transport layer, alongside the enhanced operational and shelf-life stability for unencapsulated devices. |
published_date |
2022-12-22T20:30:19Z |
_version_ |
1822072996305567744 |
score |
11.048302 |