No Cover Image

Book chapter 791 views

Inverse Aerodynamic Design Using Neural Networks

Kensley Balla, Rubén Sevilla Orcid Logo, Oubay Hassan Orcid Logo, Kenneth Morgan Orcid Logo

Advances in Computational Methods and Technologies in Aeronautics and Industry, Volume: 57, Pages: 131 - 143

Swansea University Authors: Rubén Sevilla Orcid Logo, Oubay Hassan Orcid Logo, Kenneth Morgan Orcid Logo

Full text not available from this repository: check for access using links below.

Abstract

An efficient computational framework is presented and applied to the inverse aerodynamic shape design problem. The main building block is a novel neural network capable to accurately predict the pressure distribution on aerofoils and wings. The trained neural network is used to accelerate the evalua...

Full description

Published in: Advances in Computational Methods and Technologies in Aeronautics and Industry
ISBN: 9783031120183 9783031120190
ISSN: 1871-3033 2543-0203
Published: Cham Springer International Publishing 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa62238
first_indexed 2023-01-03T11:15:57Z
last_indexed 2023-02-04T04:13:25Z
id cronfa62238
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2023-02-03T12:25:50.4235527</datestamp><bib-version>v2</bib-version><id>62238</id><entry>2023-01-03</entry><title>Inverse Aerodynamic Design Using Neural Networks</title><swanseaauthors><author><sid>b542c87f1b891262844e95a682f045b6</sid><ORCID>0000-0002-0061-6214</ORCID><firstname>Rub&#xE9;n</firstname><surname>Sevilla</surname><name>Rub&#xE9;n Sevilla</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>07479d73eba3773d8904cbfbacc57c5b</sid><ORCID>0000-0001-7472-3218</ORCID><firstname>Oubay</firstname><surname>Hassan</surname><name>Oubay Hassan</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>17f3de8936c7f981aea3a832579c5e91</sid><ORCID>0000-0003-0760-1688</ORCID><firstname>Kenneth</firstname><surname>Morgan</surname><name>Kenneth Morgan</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-01-03</date><deptcode>ACEM</deptcode><abstract>An efficient computational framework is presented and applied to the inverse aerodynamic shape design problem. The main building block is a novel neural network capable to accurately predict the pressure distribution on aerofoils and wings. The trained neural network is used to accelerate the evaluation of the objective function in an optimisation algorithm based on the gradient-free modified cuckoo search method. Two applications are presented in two and three dimensions for problems involving up to 50 geometric parameters.</abstract><type>Book chapter</type><journal>Advances in Computational Methods and Technologies in Aeronautics and Industry</journal><volume>57</volume><journalNumber/><paginationStart>131</paginationStart><paginationEnd>143</paginationEnd><publisher>Springer International Publishing</publisher><placeOfPublication>Cham</placeOfPublication><isbnPrint>9783031120183</isbnPrint><isbnElectronic>9783031120190</isbnElectronic><issnPrint>1871-3033</issnPrint><issnElectronic>2543-0203</issnElectronic><keywords>Aerodynamic design; Neural network; Optimisation</keywords><publishedDay>13</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-12-13</publishedDate><doi>10.1007/978-3-031-12019-0_10</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-02-03T12:25:50.4235527</lastEdited><Created>2023-01-03T11:12:51.6880858</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Kensley</firstname><surname>Balla</surname><order>1</order></author><author><firstname>Rub&#xE9;n</firstname><surname>Sevilla</surname><orcid>0000-0002-0061-6214</orcid><order>2</order></author><author><firstname>Oubay</firstname><surname>Hassan</surname><orcid>0000-0001-7472-3218</orcid><order>3</order></author><author><firstname>Kenneth</firstname><surname>Morgan</surname><orcid>0000-0003-0760-1688</orcid><order>4</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2023-02-03T12:25:50.4235527 v2 62238 2023-01-03 Inverse Aerodynamic Design Using Neural Networks b542c87f1b891262844e95a682f045b6 0000-0002-0061-6214 Rubén Sevilla Rubén Sevilla true false 07479d73eba3773d8904cbfbacc57c5b 0000-0001-7472-3218 Oubay Hassan Oubay Hassan true false 17f3de8936c7f981aea3a832579c5e91 0000-0003-0760-1688 Kenneth Morgan Kenneth Morgan true false 2023-01-03 ACEM An efficient computational framework is presented and applied to the inverse aerodynamic shape design problem. The main building block is a novel neural network capable to accurately predict the pressure distribution on aerofoils and wings. The trained neural network is used to accelerate the evaluation of the objective function in an optimisation algorithm based on the gradient-free modified cuckoo search method. Two applications are presented in two and three dimensions for problems involving up to 50 geometric parameters. Book chapter Advances in Computational Methods and Technologies in Aeronautics and Industry 57 131 143 Springer International Publishing Cham 9783031120183 9783031120190 1871-3033 2543-0203 Aerodynamic design; Neural network; Optimisation 13 12 2022 2022-12-13 10.1007/978-3-031-12019-0_10 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University 2023-02-03T12:25:50.4235527 2023-01-03T11:12:51.6880858 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Kensley Balla 1 Rubén Sevilla 0000-0002-0061-6214 2 Oubay Hassan 0000-0001-7472-3218 3 Kenneth Morgan 0000-0003-0760-1688 4
title Inverse Aerodynamic Design Using Neural Networks
spellingShingle Inverse Aerodynamic Design Using Neural Networks
Rubén Sevilla
Oubay Hassan
Kenneth Morgan
title_short Inverse Aerodynamic Design Using Neural Networks
title_full Inverse Aerodynamic Design Using Neural Networks
title_fullStr Inverse Aerodynamic Design Using Neural Networks
title_full_unstemmed Inverse Aerodynamic Design Using Neural Networks
title_sort Inverse Aerodynamic Design Using Neural Networks
author_id_str_mv b542c87f1b891262844e95a682f045b6
07479d73eba3773d8904cbfbacc57c5b
17f3de8936c7f981aea3a832579c5e91
author_id_fullname_str_mv b542c87f1b891262844e95a682f045b6_***_Rubén Sevilla
07479d73eba3773d8904cbfbacc57c5b_***_Oubay Hassan
17f3de8936c7f981aea3a832579c5e91_***_Kenneth Morgan
author Rubén Sevilla
Oubay Hassan
Kenneth Morgan
author2 Kensley Balla
Rubén Sevilla
Oubay Hassan
Kenneth Morgan
format Book chapter
container_title Advances in Computational Methods and Technologies in Aeronautics and Industry
container_volume 57
container_start_page 131
publishDate 2022
institution Swansea University
isbn 9783031120183
9783031120190
issn 1871-3033
2543-0203
doi_str_mv 10.1007/978-3-031-12019-0_10
publisher Springer International Publishing
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering
document_store_str 0
active_str 0
description An efficient computational framework is presented and applied to the inverse aerodynamic shape design problem. The main building block is a novel neural network capable to accurately predict the pressure distribution on aerofoils and wings. The trained neural network is used to accelerate the evaluation of the objective function in an optimisation algorithm based on the gradient-free modified cuckoo search method. Two applications are presented in two and three dimensions for problems involving up to 50 geometric parameters.
published_date 2022-12-13T20:27:24Z
_version_ 1821982216514699264
score 11.048042