Book chapter 791 views
Inverse Aerodynamic Design Using Neural Networks
Advances in Computational Methods and Technologies in Aeronautics and Industry, Volume: 57, Pages: 131 - 143
Swansea University Authors: Rubén Sevilla , Oubay Hassan , Kenneth Morgan
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1007/978-3-031-12019-0_10
Abstract
An efficient computational framework is presented and applied to the inverse aerodynamic shape design problem. The main building block is a novel neural network capable to accurately predict the pressure distribution on aerofoils and wings. The trained neural network is used to accelerate the evalua...
Published in: | Advances in Computational Methods and Technologies in Aeronautics and Industry |
---|---|
ISBN: | 9783031120183 9783031120190 |
ISSN: | 1871-3033 2543-0203 |
Published: |
Cham
Springer International Publishing
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa62238 |
first_indexed |
2023-01-03T11:15:57Z |
---|---|
last_indexed |
2023-02-04T04:13:25Z |
id |
cronfa62238 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-02-03T12:25:50.4235527</datestamp><bib-version>v2</bib-version><id>62238</id><entry>2023-01-03</entry><title>Inverse Aerodynamic Design Using Neural Networks</title><swanseaauthors><author><sid>b542c87f1b891262844e95a682f045b6</sid><ORCID>0000-0002-0061-6214</ORCID><firstname>Rubén</firstname><surname>Sevilla</surname><name>Rubén Sevilla</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>07479d73eba3773d8904cbfbacc57c5b</sid><ORCID>0000-0001-7472-3218</ORCID><firstname>Oubay</firstname><surname>Hassan</surname><name>Oubay Hassan</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>17f3de8936c7f981aea3a832579c5e91</sid><ORCID>0000-0003-0760-1688</ORCID><firstname>Kenneth</firstname><surname>Morgan</surname><name>Kenneth Morgan</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-01-03</date><deptcode>ACEM</deptcode><abstract>An efficient computational framework is presented and applied to the inverse aerodynamic shape design problem. The main building block is a novel neural network capable to accurately predict the pressure distribution on aerofoils and wings. The trained neural network is used to accelerate the evaluation of the objective function in an optimisation algorithm based on the gradient-free modified cuckoo search method. Two applications are presented in two and three dimensions for problems involving up to 50 geometric parameters.</abstract><type>Book chapter</type><journal>Advances in Computational Methods and Technologies in Aeronautics and Industry</journal><volume>57</volume><journalNumber/><paginationStart>131</paginationStart><paginationEnd>143</paginationEnd><publisher>Springer International Publishing</publisher><placeOfPublication>Cham</placeOfPublication><isbnPrint>9783031120183</isbnPrint><isbnElectronic>9783031120190</isbnElectronic><issnPrint>1871-3033</issnPrint><issnElectronic>2543-0203</issnElectronic><keywords>Aerodynamic design; Neural network; Optimisation</keywords><publishedDay>13</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-12-13</publishedDate><doi>10.1007/978-3-031-12019-0_10</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-02-03T12:25:50.4235527</lastEdited><Created>2023-01-03T11:12:51.6880858</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Kensley</firstname><surname>Balla</surname><order>1</order></author><author><firstname>Rubén</firstname><surname>Sevilla</surname><orcid>0000-0002-0061-6214</orcid><order>2</order></author><author><firstname>Oubay</firstname><surname>Hassan</surname><orcid>0000-0001-7472-3218</orcid><order>3</order></author><author><firstname>Kenneth</firstname><surname>Morgan</surname><orcid>0000-0003-0760-1688</orcid><order>4</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2023-02-03T12:25:50.4235527 v2 62238 2023-01-03 Inverse Aerodynamic Design Using Neural Networks b542c87f1b891262844e95a682f045b6 0000-0002-0061-6214 Rubén Sevilla Rubén Sevilla true false 07479d73eba3773d8904cbfbacc57c5b 0000-0001-7472-3218 Oubay Hassan Oubay Hassan true false 17f3de8936c7f981aea3a832579c5e91 0000-0003-0760-1688 Kenneth Morgan Kenneth Morgan true false 2023-01-03 ACEM An efficient computational framework is presented and applied to the inverse aerodynamic shape design problem. The main building block is a novel neural network capable to accurately predict the pressure distribution on aerofoils and wings. The trained neural network is used to accelerate the evaluation of the objective function in an optimisation algorithm based on the gradient-free modified cuckoo search method. Two applications are presented in two and three dimensions for problems involving up to 50 geometric parameters. Book chapter Advances in Computational Methods and Technologies in Aeronautics and Industry 57 131 143 Springer International Publishing Cham 9783031120183 9783031120190 1871-3033 2543-0203 Aerodynamic design; Neural network; Optimisation 13 12 2022 2022-12-13 10.1007/978-3-031-12019-0_10 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University 2023-02-03T12:25:50.4235527 2023-01-03T11:12:51.6880858 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Kensley Balla 1 Rubén Sevilla 0000-0002-0061-6214 2 Oubay Hassan 0000-0001-7472-3218 3 Kenneth Morgan 0000-0003-0760-1688 4 |
title |
Inverse Aerodynamic Design Using Neural Networks |
spellingShingle |
Inverse Aerodynamic Design Using Neural Networks Rubén Sevilla Oubay Hassan Kenneth Morgan |
title_short |
Inverse Aerodynamic Design Using Neural Networks |
title_full |
Inverse Aerodynamic Design Using Neural Networks |
title_fullStr |
Inverse Aerodynamic Design Using Neural Networks |
title_full_unstemmed |
Inverse Aerodynamic Design Using Neural Networks |
title_sort |
Inverse Aerodynamic Design Using Neural Networks |
author_id_str_mv |
b542c87f1b891262844e95a682f045b6 07479d73eba3773d8904cbfbacc57c5b 17f3de8936c7f981aea3a832579c5e91 |
author_id_fullname_str_mv |
b542c87f1b891262844e95a682f045b6_***_Rubén Sevilla 07479d73eba3773d8904cbfbacc57c5b_***_Oubay Hassan 17f3de8936c7f981aea3a832579c5e91_***_Kenneth Morgan |
author |
Rubén Sevilla Oubay Hassan Kenneth Morgan |
author2 |
Kensley Balla Rubén Sevilla Oubay Hassan Kenneth Morgan |
format |
Book chapter |
container_title |
Advances in Computational Methods and Technologies in Aeronautics and Industry |
container_volume |
57 |
container_start_page |
131 |
publishDate |
2022 |
institution |
Swansea University |
isbn |
9783031120183 9783031120190 |
issn |
1871-3033 2543-0203 |
doi_str_mv |
10.1007/978-3-031-12019-0_10 |
publisher |
Springer International Publishing |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
document_store_str |
0 |
active_str |
0 |
description |
An efficient computational framework is presented and applied to the inverse aerodynamic shape design problem. The main building block is a novel neural network capable to accurately predict the pressure distribution on aerofoils and wings. The trained neural network is used to accelerate the evaluation of the objective function in an optimisation algorithm based on the gradient-free modified cuckoo search method. Two applications are presented in two and three dimensions for problems involving up to 50 geometric parameters. |
published_date |
2022-12-13T20:27:24Z |
_version_ |
1821982216514699264 |
score |
11.048042 |