Journal article 622 views 30 downloads
Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries
ACS Applied Energy Materials, Volume: 6, Issue: 1, Pages: 51 - 57
Swansea University Author: Anji Munnangi
-
PDF | Accepted Manuscript
Download (889.21KB)
DOI (Published version): 10.1021/acsaem.2c03334
Abstract
In this work, we introduced a garnet-type lithium metal fluoride, Li3Na3M2F12 (M = Al, Sc, In), as solid-state lithium-ion conductors for the first time. The mechanically milled Li3Na3M2F12 compounds crystallized in a cubic garnet-like structure (Ia3̅d, No. 230). The ionic conductivities of Li3Na3Al...
Published in: | ACS Applied Energy Materials |
---|---|
ISSN: | 2574-0962 2574-0962 |
Published: |
American Chemical Society (ACS)
2023
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa62308 |
first_indexed |
2023-01-12T09:28:07Z |
---|---|
last_indexed |
2024-11-14T12:20:43Z |
id |
cronfa62308 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-07-25T15:53:32.5185512</datestamp><bib-version>v2</bib-version><id>62308</id><entry>2023-01-12</entry><title>Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries</title><swanseaauthors><author><sid>3ed0b4f2ff4fb9e87c7a73e7a3c39da7</sid><ORCID>0000-0001-9101-0252</ORCID><firstname>Anji</firstname><surname>Munnangi</surname><name>Anji Munnangi</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-01-12</date><deptcode>EAAS</deptcode><abstract>In this work, we introduced a garnet-type lithium metal fluoride, Li3Na3M2F12 (M = Al, Sc, In), as solid-state lithium-ion conductors for the first time. The mechanically milled Li3Na3M2F12 compounds crystallized in a cubic garnet-like structure (Ia3̅d, No. 230). The ionic conductivities of Li3Na3Al2F12, Li3Na3Sc2F12, and Li3Na3In2F12 are 1.7 × 10–6, 8.2 × 10–6, and 2.4 × 10–6 S/cm at 300 °C and 1.2 × 10–10, 2.6 × 10–9, and 1.8 × 10–10 S/cm at 100 °C, respectively. Even though these fluoride garnets’ conductivity is less, it is still better than those of the oxide analogues Li3Ln3Te2O12 (Ln = Er, Gd, Tb, Nd). Moreover, we explored why garnet-type Li3Na3M2F12 has low ionic conductivity and presented strategies for further improving conductivities.</abstract><type>Journal Article</type><journal>ACS Applied Energy Materials</journal><volume>6</volume><journalNumber>1</journalNumber><paginationStart>51</paginationStart><paginationEnd>57</paginationEnd><publisher>American Chemical Society (ACS)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2574-0962</issnPrint><issnElectronic>2574-0962</issnElectronic><keywords>Garnet-type lithium metal fluorides; Solid electrolytes; XRD; Rietveld refinement; Ionic conductivity; Solid-state lithium batteries</keywords><publishedDay>9</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-01-09</publishedDate><doi>10.1021/acsaem.2c03334</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>German Research Foundation under Project ID 01DQ19012A (SELBA)</funders><projectreference/><lastEdited>2024-07-25T15:53:32.5185512</lastEdited><Created>2023-01-12T09:23:47.5739683</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Ediga</firstname><surname>Umeshbabu</surname><orcid>0000-0003-4233-5565</orcid><order>1</order></author><author><firstname>Satyanarayana</firstname><surname>Maddukuri</surname><order>2</order></author><author><firstname>Doron</firstname><surname>Aurbach</surname><order>3</order></author><author><firstname>Maximilian</firstname><surname>Fichtner</surname><orcid>0000-0002-7127-1823</orcid><order>4</order></author><author><firstname>Anji</firstname><surname>Munnangi</surname><orcid>0000-0001-9101-0252</orcid><order>5</order></author></authors><documents><document><filename>62308__26280__51dc78b8c1a441daa666e22cd62559c4.pdf</filename><originalFilename>62308.pdf</originalFilename><uploaded>2023-01-13T10:39:45.5868322</uploaded><type>Output</type><contentLength>910556</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2023-12-28T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2024-07-25T15:53:32.5185512 v2 62308 2023-01-12 Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries 3ed0b4f2ff4fb9e87c7a73e7a3c39da7 0000-0001-9101-0252 Anji Munnangi Anji Munnangi true false 2023-01-12 EAAS In this work, we introduced a garnet-type lithium metal fluoride, Li3Na3M2F12 (M = Al, Sc, In), as solid-state lithium-ion conductors for the first time. The mechanically milled Li3Na3M2F12 compounds crystallized in a cubic garnet-like structure (Ia3̅d, No. 230). The ionic conductivities of Li3Na3Al2F12, Li3Na3Sc2F12, and Li3Na3In2F12 are 1.7 × 10–6, 8.2 × 10–6, and 2.4 × 10–6 S/cm at 300 °C and 1.2 × 10–10, 2.6 × 10–9, and 1.8 × 10–10 S/cm at 100 °C, respectively. Even though these fluoride garnets’ conductivity is less, it is still better than those of the oxide analogues Li3Ln3Te2O12 (Ln = Er, Gd, Tb, Nd). Moreover, we explored why garnet-type Li3Na3M2F12 has low ionic conductivity and presented strategies for further improving conductivities. Journal Article ACS Applied Energy Materials 6 1 51 57 American Chemical Society (ACS) 2574-0962 2574-0962 Garnet-type lithium metal fluorides; Solid electrolytes; XRD; Rietveld refinement; Ionic conductivity; Solid-state lithium batteries 9 1 2023 2023-01-09 10.1021/acsaem.2c03334 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University German Research Foundation under Project ID 01DQ19012A (SELBA) 2024-07-25T15:53:32.5185512 2023-01-12T09:23:47.5739683 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Ediga Umeshbabu 0000-0003-4233-5565 1 Satyanarayana Maddukuri 2 Doron Aurbach 3 Maximilian Fichtner 0000-0002-7127-1823 4 Anji Munnangi 0000-0001-9101-0252 5 62308__26280__51dc78b8c1a441daa666e22cd62559c4.pdf 62308.pdf 2023-01-13T10:39:45.5868322 Output 910556 application/pdf Accepted Manuscript true 2023-12-28T00:00:00.0000000 true eng |
title |
Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries |
spellingShingle |
Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries Anji Munnangi |
title_short |
Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries |
title_full |
Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries |
title_fullStr |
Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries |
title_full_unstemmed |
Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries |
title_sort |
Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries |
author_id_str_mv |
3ed0b4f2ff4fb9e87c7a73e7a3c39da7 |
author_id_fullname_str_mv |
3ed0b4f2ff4fb9e87c7a73e7a3c39da7_***_Anji Munnangi |
author |
Anji Munnangi |
author2 |
Ediga Umeshbabu Satyanarayana Maddukuri Doron Aurbach Maximilian Fichtner Anji Munnangi |
format |
Journal article |
container_title |
ACS Applied Energy Materials |
container_volume |
6 |
container_issue |
1 |
container_start_page |
51 |
publishDate |
2023 |
institution |
Swansea University |
issn |
2574-0962 2574-0962 |
doi_str_mv |
10.1021/acsaem.2c03334 |
publisher |
American Chemical Society (ACS) |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
document_store_str |
1 |
active_str |
0 |
description |
In this work, we introduced a garnet-type lithium metal fluoride, Li3Na3M2F12 (M = Al, Sc, In), as solid-state lithium-ion conductors for the first time. The mechanically milled Li3Na3M2F12 compounds crystallized in a cubic garnet-like structure (Ia3̅d, No. 230). The ionic conductivities of Li3Na3Al2F12, Li3Na3Sc2F12, and Li3Na3In2F12 are 1.7 × 10–6, 8.2 × 10–6, and 2.4 × 10–6 S/cm at 300 °C and 1.2 × 10–10, 2.6 × 10–9, and 1.8 × 10–10 S/cm at 100 °C, respectively. Even though these fluoride garnets’ conductivity is less, it is still better than those of the oxide analogues Li3Ln3Te2O12 (Ln = Er, Gd, Tb, Nd). Moreover, we explored why garnet-type Li3Na3M2F12 has low ionic conductivity and presented strategies for further improving conductivities. |
published_date |
2023-01-09T08:17:44Z |
_version_ |
1822026907011514368 |
score |
11.496276 |