No Cover Image

Journal article 622 views 30 downloads

Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries

Ediga Umeshbabu Orcid Logo, Satyanarayana Maddukuri, Doron Aurbach, Maximilian Fichtner Orcid Logo, Anji Munnangi Orcid Logo

ACS Applied Energy Materials, Volume: 6, Issue: 1, Pages: 51 - 57

Swansea University Author: Anji Munnangi Orcid Logo

Check full text

DOI (Published version): 10.1021/acsaem.2c03334

Abstract

In this work, we introduced a garnet-type lithium metal fluoride, Li3Na3M2F12 (M = Al, Sc, In), as solid-state lithium-ion conductors for the first time. The mechanically milled Li3Na3M2F12 compounds crystallized in a cubic garnet-like structure (Ia3̅d, No. 230). The ionic conductivities of Li3Na3Al...

Full description

Published in: ACS Applied Energy Materials
ISSN: 2574-0962 2574-0962
Published: American Chemical Society (ACS) 2023
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa62308
first_indexed 2023-01-12T09:28:07Z
last_indexed 2024-11-14T12:20:43Z
id cronfa62308
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2024-07-25T15:53:32.5185512</datestamp><bib-version>v2</bib-version><id>62308</id><entry>2023-01-12</entry><title>Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries</title><swanseaauthors><author><sid>3ed0b4f2ff4fb9e87c7a73e7a3c39da7</sid><ORCID>0000-0001-9101-0252</ORCID><firstname>Anji</firstname><surname>Munnangi</surname><name>Anji Munnangi</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-01-12</date><deptcode>EAAS</deptcode><abstract>In this work, we introduced a garnet-type lithium metal fluoride, Li3Na3M2F12 (M = Al, Sc, In), as solid-state lithium-ion conductors for the first time. The mechanically milled Li3Na3M2F12 compounds crystallized in a cubic garnet-like structure (Ia3&#x305;d, No. 230). The ionic conductivities of Li3Na3Al2F12, Li3Na3Sc2F12, and Li3Na3In2F12 are 1.7 &#xD7; 10&#x2013;6, 8.2 &#xD7; 10&#x2013;6, and 2.4 &#xD7; 10&#x2013;6 S/cm at 300 &#xB0;C and 1.2 &#xD7; 10&#x2013;10, 2.6 &#xD7; 10&#x2013;9, and 1.8 &#xD7; 10&#x2013;10 S/cm at 100 &#xB0;C, respectively. Even though these fluoride garnets&#x2019; conductivity is less, it is still better than those of the oxide analogues Li3Ln3Te2O12 (Ln = Er, Gd, Tb, Nd). Moreover, we explored why garnet-type Li3Na3M2F12 has low ionic conductivity and presented strategies for further improving conductivities.</abstract><type>Journal Article</type><journal>ACS Applied Energy Materials</journal><volume>6</volume><journalNumber>1</journalNumber><paginationStart>51</paginationStart><paginationEnd>57</paginationEnd><publisher>American Chemical Society (ACS)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2574-0962</issnPrint><issnElectronic>2574-0962</issnElectronic><keywords>Garnet-type lithium metal fluorides; Solid electrolytes; XRD; Rietveld refinement; Ionic conductivity; Solid-state lithium batteries</keywords><publishedDay>9</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-01-09</publishedDate><doi>10.1021/acsaem.2c03334</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>German Research Foundation under Project ID 01DQ19012A (SELBA)</funders><projectreference/><lastEdited>2024-07-25T15:53:32.5185512</lastEdited><Created>2023-01-12T09:23:47.5739683</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Ediga</firstname><surname>Umeshbabu</surname><orcid>0000-0003-4233-5565</orcid><order>1</order></author><author><firstname>Satyanarayana</firstname><surname>Maddukuri</surname><order>2</order></author><author><firstname>Doron</firstname><surname>Aurbach</surname><order>3</order></author><author><firstname>Maximilian</firstname><surname>Fichtner</surname><orcid>0000-0002-7127-1823</orcid><order>4</order></author><author><firstname>Anji</firstname><surname>Munnangi</surname><orcid>0000-0001-9101-0252</orcid><order>5</order></author></authors><documents><document><filename>62308__26280__51dc78b8c1a441daa666e22cd62559c4.pdf</filename><originalFilename>62308.pdf</originalFilename><uploaded>2023-01-13T10:39:45.5868322</uploaded><type>Output</type><contentLength>910556</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2023-12-28T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2024-07-25T15:53:32.5185512 v2 62308 2023-01-12 Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries 3ed0b4f2ff4fb9e87c7a73e7a3c39da7 0000-0001-9101-0252 Anji Munnangi Anji Munnangi true false 2023-01-12 EAAS In this work, we introduced a garnet-type lithium metal fluoride, Li3Na3M2F12 (M = Al, Sc, In), as solid-state lithium-ion conductors for the first time. The mechanically milled Li3Na3M2F12 compounds crystallized in a cubic garnet-like structure (Ia3̅d, No. 230). The ionic conductivities of Li3Na3Al2F12, Li3Na3Sc2F12, and Li3Na3In2F12 are 1.7 × 10–6, 8.2 × 10–6, and 2.4 × 10–6 S/cm at 300 °C and 1.2 × 10–10, 2.6 × 10–9, and 1.8 × 10–10 S/cm at 100 °C, respectively. Even though these fluoride garnets’ conductivity is less, it is still better than those of the oxide analogues Li3Ln3Te2O12 (Ln = Er, Gd, Tb, Nd). Moreover, we explored why garnet-type Li3Na3M2F12 has low ionic conductivity and presented strategies for further improving conductivities. Journal Article ACS Applied Energy Materials 6 1 51 57 American Chemical Society (ACS) 2574-0962 2574-0962 Garnet-type lithium metal fluorides; Solid electrolytes; XRD; Rietveld refinement; Ionic conductivity; Solid-state lithium batteries 9 1 2023 2023-01-09 10.1021/acsaem.2c03334 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University German Research Foundation under Project ID 01DQ19012A (SELBA) 2024-07-25T15:53:32.5185512 2023-01-12T09:23:47.5739683 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Ediga Umeshbabu 0000-0003-4233-5565 1 Satyanarayana Maddukuri 2 Doron Aurbach 3 Maximilian Fichtner 0000-0002-7127-1823 4 Anji Munnangi 0000-0001-9101-0252 5 62308__26280__51dc78b8c1a441daa666e22cd62559c4.pdf 62308.pdf 2023-01-13T10:39:45.5868322 Output 910556 application/pdf Accepted Manuscript true 2023-12-28T00:00:00.0000000 true eng
title Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries
spellingShingle Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries
Anji Munnangi
title_short Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries
title_full Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries
title_fullStr Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries
title_full_unstemmed Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries
title_sort Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries
author_id_str_mv 3ed0b4f2ff4fb9e87c7a73e7a3c39da7
author_id_fullname_str_mv 3ed0b4f2ff4fb9e87c7a73e7a3c39da7_***_Anji Munnangi
author Anji Munnangi
author2 Ediga Umeshbabu
Satyanarayana Maddukuri
Doron Aurbach
Maximilian Fichtner
Anji Munnangi
format Journal article
container_title ACS Applied Energy Materials
container_volume 6
container_issue 1
container_start_page 51
publishDate 2023
institution Swansea University
issn 2574-0962
2574-0962
doi_str_mv 10.1021/acsaem.2c03334
publisher American Chemical Society (ACS)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
document_store_str 1
active_str 0
description In this work, we introduced a garnet-type lithium metal fluoride, Li3Na3M2F12 (M = Al, Sc, In), as solid-state lithium-ion conductors for the first time. The mechanically milled Li3Na3M2F12 compounds crystallized in a cubic garnet-like structure (Ia3̅d, No. 230). The ionic conductivities of Li3Na3Al2F12, Li3Na3Sc2F12, and Li3Na3In2F12 are 1.7 × 10–6, 8.2 × 10–6, and 2.4 × 10–6 S/cm at 300 °C and 1.2 × 10–10, 2.6 × 10–9, and 1.8 × 10–10 S/cm at 100 °C, respectively. Even though these fluoride garnets’ conductivity is less, it is still better than those of the oxide analogues Li3Ln3Te2O12 (Ln = Er, Gd, Tb, Nd). Moreover, we explored why garnet-type Li3Na3M2F12 has low ionic conductivity and presented strategies for further improving conductivities.
published_date 2023-01-09T08:17:44Z
_version_ 1822026907011514368
score 11.496276