No Cover Image

Journal article 309 views 45 downloads

Structure and evolution of the drainage system of a Himalayan debris-covered glacier, and its relationship with patterns of mass loss

Douglas I. Benn, Sarah Thompson, Jason Gulley, Jordan Mertes, Adrian Luckman Orcid Logo, Lindsey Nicholson Orcid Logo

The Cryosphere, Volume: 11, Issue: 5, Pages: 2247 - 2264

Swansea University Author: Adrian Luckman Orcid Logo

  • 62747_VoR.pdf

    PDF | Version of Record

    © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.

    Download (22.02MB)

Abstract

We provide the first synoptic view of the drainage system of a Himalayan debris-covered glacier and its evolution through time, based on speleological exploration and satellite image analysis of Ngozumpa Glacier, Nepal. The drainage system has several linked components: (1) a seasonal subglacial dra...

Full description

Published in: The Cryosphere
ISSN: 1994-0424
Published: Copernicus GmbH 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa62747
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: We provide the first synoptic view of the drainage system of a Himalayan debris-covered glacier and its evolution through time, based on speleological exploration and satellite image analysis of Ngozumpa Glacier, Nepal. The drainage system has several linked components: (1) a seasonal subglacial drainage system below the upper ablation zone; (2) supraglacial channels, allowing efficient meltwater transport across parts of the upper ablation zone; (3) sub-marginal channels, allowing long-distance transport of meltwater; (4) perched ponds, which intermittently store meltwater prior to evacuation via the englacial drainage system; (5) englacial cut-and-closure conduits, which may undergo repeated cycles of abandonment and reactivation; and (6) a "base-level" lake system (Spillway Lake) dammed behind the terminal moraine. The distribution and relative importance of these elements has evolved through time, in response to sustained negative mass balance. The area occupied by perched ponds has expanded upglacier at the expense of supraglacial channels, and Spillway Lake has grown as more of the glacier surface ablates to base level. Subsurface processes play a governing role in creating, maintaining, and shutting down exposures of ice at the glacier surface, with a major impact on spatial patterns and rates of surface mass loss. Comparison of our results with observations on other glaciers indicate that englacial drainage systems play a key role in the response of debris-covered glaciers to sustained periods of negative mass balance.
College: Faculty of Science and Engineering
Funders: Funding for Sarah Thompson was provided by the European Commission FP7-MC-IEF grant PIEF-GA2012-330805, and for Lindsey Nicholson by the Austrian Science Fund (FWF) Elise Richter Grant (V309-N26). Financial support for fieldwork in 2009 was provided by the University Centre in Svalbard and a Royal Geographical Society fieldwork grant to Sarah Thompson. Field assistance was given by Annelie Bergström and Alison Banwell. TerraSAR-X data were kindly provided by the German Aerospace Center (DLR) under project HYD0178. The meteorological data were collected within the Ev-K2-CNR SHARE Project, funded by contributions from the Italian National Research Council and the Italian Ministry of Foreign Affairs, and we thank Patrick Wagnon of the Institut de Recherche pour le Développement, France, for collecting and releasing the 2014–2015 data used in this paper. Careful and constructive reviews by Akiko Sakai and Duncan Quincey are gratefully acknowledged.
Issue: 5
Start Page: 2247
End Page: 2264