Journal article 645 views 70 downloads
Quantifying allo-grooming in wild chacma baboons (Papio ursinus) using tri-axial acceleration data and machine learning
Royal Society Open Science, Volume: 10, Issue: 4
Swansea University Authors: Charlotte Christensen, Anna Bracken, Mark Holton , Phillip Hopkins , Andrew King , Ines Fuertbauer
-
PDF | Version of Record
Distributed under the terms of a Creative Commons Attribution 4.0 License.
Download (1.06MB)
DOI (Published version): 10.1098/rsos.221103
Abstract
Quantification of activity budgets is pivotal for understanding how animals respond to changes in their environment. Social grooming is a key activity that underpins various social processes with consequences for health and fitness. Traditional methods use direct (focal) observations to calculate gr...
Published in: | Royal Society Open Science |
---|---|
ISSN: | 2054-5703 |
Published: |
The Royal Society
2023
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa62974 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract: |
Quantification of activity budgets is pivotal for understanding how animals respond to changes in their environment. Social grooming is a key activity that underpins various social processes with consequences for health and fitness. Traditional methods use direct (focal) observations to calculate grooming rates, providing systematic but sparse data. Accelerometers, in contrast, can quantify activity budgets continuously but have not been used to quantify social grooming. We test whether grooming can be accurately identified using machine learning (random forest model) trained on labelled acceleration data from wild chacma baboons (Papio ursinus). We successfully identified giving and receiving grooming with high precision (81% and 91%) and recall (87% and 79%). Giving grooming was associated with a distinct rhythmical signal along the surge axis. Receiving grooming had similar acceleration signals to resting, and thus was more difficult to assign. We applied our machine learning model to n = 680 collar data days from n = 12 baboons and found that grooming rates obtained from accelerometers were significantly and positively correlated with direct observation rates for giving but not receiving grooming. The ability to collect continuous grooming data in wild populations will allow researchers to re-examine and expand upon long-standing questions regarding the formation and function of grooming bonds. |
---|---|
Keywords: |
machine learning, tri-axial accelerometers, random forest models, allo-grooming, activity budgets, primates |
College: |
Faculty of Science and Engineering |
Funders: |
Swansea University, NRF Incentive Funding |
Issue: |
4 |