No Cover Image

Journal article 589 views 138 downloads

In silico enhancer mining reveals SNS-032 and EHMT2 inhibitors as therapeutic candidates in high-grade serous ovarian cancer

Amy Johnson, Marcos Quintela Orcid Logo, David W. James, Jetzabel Garcia, Kadie Edwards Orcid Logo, Lavinia Margarit, Nagindra Das, Kerryn Lutchman-Singh, Amy L. Beynon, Inmaculada Rioja, Rab K. Prinjha, Nicola R. Harker, Deyarina Gonzalez, Steve Conlan Orcid Logo, Lewis Francis Orcid Logo

British Journal of Cancer, Volume: 129, Issue: 1, Pages: 163 - 174

Swansea University Authors: Amy Johnson, Kadie Edwards Orcid Logo, Steve Conlan Orcid Logo, Lewis Francis Orcid Logo

  • 63224.pdf

    PDF | Version of Record

    © The Author(s) 2023. Distributed under the terms of a Creative Commons Attribution 4.0 License (CC BY 4.0).

    Download (2.32MB)
  • 63224.VOR.pdf

    PDF | Version of Record

    © The Author(s) 2023. Distributed under the terms of a Creative Commons Attribution 4.0 License (CC BY 4.0).

    Download (2.31MB)

Abstract

Background: Epigenomic dysregulation has been linked to solid tumour malignancies, including ovarian cancers. Profiling of re-programmed enhancer locations associated with disease has the potential to improve stratification and thus therapeutic choices. Ovarian cancers are subdivided into histologic...

Full description

Published in: British Journal of Cancer
ISSN: 0007-0920 1532-1827
Published: Springer Science and Business Media LLC 2023
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa63224
first_indexed 2023-04-21T09:35:10Z
last_indexed 2024-11-15T18:01:11Z
id cronfa63224
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2023-09-13T15:07:12.2622169</datestamp><bib-version>v2</bib-version><id>63224</id><entry>2023-04-21</entry><title>In silico enhancer mining reveals SNS-032 and EHMT2 inhibitors as therapeutic candidates in high-grade serous ovarian cancer</title><swanseaauthors><author><sid>cd71e22a01d9a5d7e46cd8ef0fc28da1</sid><firstname>Amy</firstname><surname>Johnson</surname><name>Amy Johnson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>76d053c090d5064ae9558888f7985e92</sid><ORCID>0000-0002-1359-0359</ORCID><firstname>Kadie</firstname><surname>Edwards</surname><name>Kadie Edwards</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>0bb6bd247e32fb4249de62c0013b51cb</sid><ORCID>0000-0002-2562-3461</ORCID><firstname>Steve</firstname><surname>Conlan</surname><name>Steve Conlan</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>10f61f9c1248951c1a33f6a89498f37d</sid><ORCID>0000-0002-7803-7714</ORCID><firstname>Lewis</firstname><surname>Francis</surname><name>Lewis Francis</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-04-21</date><deptcode>MEDS</deptcode><abstract>Background: Epigenomic dysregulation has been linked to solid tumour malignancies, including ovarian cancers. Profiling of re-programmed enhancer locations associated with disease has the potential to improve stratification and thus therapeutic choices. Ovarian cancers are subdivided into histological subtypes that have significant molecular and clinical differences, with high-grade serous carcinoma representing the most common and aggressive subtype. Methods: We interrogated the enhancer landscape(s) of normal ovary and subtype-specific ovarian cancer states using publicly available data. With an initial focus on H3K27ac histone mark, we developed a computational pipeline to predict drug compound activity based on epigenomic stratification. Lastly, we substantiated our predictions in vitro using patient-derived clinical samples and cell lines. Results: Using our in silico approach, we highlighted recurrent and privative enhancer landscapes and identified the differential enrichment of a total of 164 transcription factors involved in 201 protein complexes across the subtypes. We pinpointed SNS-032 and EHMT2 inhibitors BIX-01294 and UNC0646 as therapeutic candidates in high-grade serous carcinoma, as well as probed the efficacy of specific inhibitors in vitro. Conclusion: Here, we report the first attempt to exploit ovarian cancer epigenomic landscapes for drug discovery. This computational pipeline holds enormous potential for translating epigenomic profiling into therapeutic leads.</abstract><type>Journal Article</type><journal>British Journal of Cancer</journal><volume>129</volume><journalNumber>1</journalNumber><paginationStart>163</paginationStart><paginationEnd>174</paginationEnd><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0007-0920</issnPrint><issnElectronic>1532-1827</issnElectronic><keywords>Ovarian cancer, ovarian tumorigenesis, epigenomic landscapes, SNS-032, EHMT2, inhibitors</keywords><publishedDay>27</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-07-27</publishedDate><doi>10.1038/s41416-023-02274-2</doi><url>http://dx.doi.org/10.1038/s41416-023-02274-2</url><notes/><college>COLLEGE NANME</college><department>Medical School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>Welsh Government and European Development Fund (2017/COL004 and 2017/COL/001)</funders><projectreference/><lastEdited>2023-09-13T15:07:12.2622169</lastEdited><Created>2023-04-21T10:07:27.4623101</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Biomedical Science</level></path><authors><author><firstname>Amy</firstname><surname>Johnson</surname><order>1</order></author><author><firstname>Marcos</firstname><surname>Quintela</surname><orcid>0000-0002-9628-695x</orcid><order>2</order></author><author><firstname>David W.</firstname><surname>James</surname><order>3</order></author><author><firstname>Jetzabel</firstname><surname>Garcia</surname><order>4</order></author><author><firstname>Kadie</firstname><surname>Edwards</surname><orcid>0000-0002-1359-0359</orcid><order>5</order></author><author><firstname>Lavinia</firstname><surname>Margarit</surname><order>6</order></author><author><firstname>Nagindra</firstname><surname>Das</surname><order>7</order></author><author><firstname>Kerryn</firstname><surname>Lutchman-Singh</surname><order>8</order></author><author><firstname>Amy L.</firstname><surname>Beynon</surname><order>9</order></author><author><firstname>Inmaculada</firstname><surname>Rioja</surname><order>10</order></author><author><firstname>Rab K.</firstname><surname>Prinjha</surname><order>11</order></author><author><firstname>Nicola R.</firstname><surname>Harker</surname><order>12</order></author><author><firstname>Deyarina</firstname><surname>Gonzalez</surname><order>13</order></author><author><firstname>Steve</firstname><surname>Conlan</surname><orcid>0000-0002-2562-3461</orcid><order>14</order></author><author><firstname>Lewis</firstname><surname>Francis</surname><orcid>0000-0002-7803-7714</orcid><order>15</order></author></authors><documents><document><filename>63224__27588__1e6a3f250f9243399740edd1ea19351b.pdf</filename><originalFilename>63224.pdf</originalFilename><uploaded>2023-05-24T11:10:06.2721407</uploaded><type>Output</type><contentLength>2436888</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; The Author(s) 2023. Distributed under the terms of a Creative Commons Attribution 4.0 License (CC BY 4.0).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document><document><filename>63224__28213__76faf8a4f6c145e4ba40185a8976eedf.pdf</filename><originalFilename>63224.VOR.pdf</originalFilename><uploaded>2023-07-31T10:02:00.4445325</uploaded><type>Output</type><contentLength>2426767</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; The Author(s) 2023. Distributed under the terms of a Creative Commons Attribution 4.0 License (CC BY 4.0).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2023-09-13T15:07:12.2622169 v2 63224 2023-04-21 In silico enhancer mining reveals SNS-032 and EHMT2 inhibitors as therapeutic candidates in high-grade serous ovarian cancer cd71e22a01d9a5d7e46cd8ef0fc28da1 Amy Johnson Amy Johnson true false 76d053c090d5064ae9558888f7985e92 0000-0002-1359-0359 Kadie Edwards Kadie Edwards true false 0bb6bd247e32fb4249de62c0013b51cb 0000-0002-2562-3461 Steve Conlan Steve Conlan true false 10f61f9c1248951c1a33f6a89498f37d 0000-0002-7803-7714 Lewis Francis Lewis Francis true false 2023-04-21 MEDS Background: Epigenomic dysregulation has been linked to solid tumour malignancies, including ovarian cancers. Profiling of re-programmed enhancer locations associated with disease has the potential to improve stratification and thus therapeutic choices. Ovarian cancers are subdivided into histological subtypes that have significant molecular and clinical differences, with high-grade serous carcinoma representing the most common and aggressive subtype. Methods: We interrogated the enhancer landscape(s) of normal ovary and subtype-specific ovarian cancer states using publicly available data. With an initial focus on H3K27ac histone mark, we developed a computational pipeline to predict drug compound activity based on epigenomic stratification. Lastly, we substantiated our predictions in vitro using patient-derived clinical samples and cell lines. Results: Using our in silico approach, we highlighted recurrent and privative enhancer landscapes and identified the differential enrichment of a total of 164 transcription factors involved in 201 protein complexes across the subtypes. We pinpointed SNS-032 and EHMT2 inhibitors BIX-01294 and UNC0646 as therapeutic candidates in high-grade serous carcinoma, as well as probed the efficacy of specific inhibitors in vitro. Conclusion: Here, we report the first attempt to exploit ovarian cancer epigenomic landscapes for drug discovery. This computational pipeline holds enormous potential for translating epigenomic profiling into therapeutic leads. Journal Article British Journal of Cancer 129 1 163 174 Springer Science and Business Media LLC 0007-0920 1532-1827 Ovarian cancer, ovarian tumorigenesis, epigenomic landscapes, SNS-032, EHMT2, inhibitors 27 7 2023 2023-07-27 10.1038/s41416-023-02274-2 http://dx.doi.org/10.1038/s41416-023-02274-2 COLLEGE NANME Medical School COLLEGE CODE MEDS Swansea University SU Library paid the OA fee (TA Institutional Deal) Welsh Government and European Development Fund (2017/COL004 and 2017/COL/001) 2023-09-13T15:07:12.2622169 2023-04-21T10:07:27.4623101 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Biomedical Science Amy Johnson 1 Marcos Quintela 0000-0002-9628-695x 2 David W. James 3 Jetzabel Garcia 4 Kadie Edwards 0000-0002-1359-0359 5 Lavinia Margarit 6 Nagindra Das 7 Kerryn Lutchman-Singh 8 Amy L. Beynon 9 Inmaculada Rioja 10 Rab K. Prinjha 11 Nicola R. Harker 12 Deyarina Gonzalez 13 Steve Conlan 0000-0002-2562-3461 14 Lewis Francis 0000-0002-7803-7714 15 63224__27588__1e6a3f250f9243399740edd1ea19351b.pdf 63224.pdf 2023-05-24T11:10:06.2721407 Output 2436888 application/pdf Version of Record true © The Author(s) 2023. Distributed under the terms of a Creative Commons Attribution 4.0 License (CC BY 4.0). true eng http://creativecommons.org/licenses/by/4.0/ 63224__28213__76faf8a4f6c145e4ba40185a8976eedf.pdf 63224.VOR.pdf 2023-07-31T10:02:00.4445325 Output 2426767 application/pdf Version of Record true © The Author(s) 2023. Distributed under the terms of a Creative Commons Attribution 4.0 License (CC BY 4.0). true eng https://creativecommons.org/licenses/by/4.0/
title In silico enhancer mining reveals SNS-032 and EHMT2 inhibitors as therapeutic candidates in high-grade serous ovarian cancer
spellingShingle In silico enhancer mining reveals SNS-032 and EHMT2 inhibitors as therapeutic candidates in high-grade serous ovarian cancer
Amy Johnson
Kadie Edwards
Steve Conlan
Lewis Francis
title_short In silico enhancer mining reveals SNS-032 and EHMT2 inhibitors as therapeutic candidates in high-grade serous ovarian cancer
title_full In silico enhancer mining reveals SNS-032 and EHMT2 inhibitors as therapeutic candidates in high-grade serous ovarian cancer
title_fullStr In silico enhancer mining reveals SNS-032 and EHMT2 inhibitors as therapeutic candidates in high-grade serous ovarian cancer
title_full_unstemmed In silico enhancer mining reveals SNS-032 and EHMT2 inhibitors as therapeutic candidates in high-grade serous ovarian cancer
title_sort In silico enhancer mining reveals SNS-032 and EHMT2 inhibitors as therapeutic candidates in high-grade serous ovarian cancer
author_id_str_mv cd71e22a01d9a5d7e46cd8ef0fc28da1
76d053c090d5064ae9558888f7985e92
0bb6bd247e32fb4249de62c0013b51cb
10f61f9c1248951c1a33f6a89498f37d
author_id_fullname_str_mv cd71e22a01d9a5d7e46cd8ef0fc28da1_***_Amy Johnson
76d053c090d5064ae9558888f7985e92_***_Kadie Edwards
0bb6bd247e32fb4249de62c0013b51cb_***_Steve Conlan
10f61f9c1248951c1a33f6a89498f37d_***_Lewis Francis
author Amy Johnson
Kadie Edwards
Steve Conlan
Lewis Francis
author2 Amy Johnson
Marcos Quintela
David W. James
Jetzabel Garcia
Kadie Edwards
Lavinia Margarit
Nagindra Das
Kerryn Lutchman-Singh
Amy L. Beynon
Inmaculada Rioja
Rab K. Prinjha
Nicola R. Harker
Deyarina Gonzalez
Steve Conlan
Lewis Francis
format Journal article
container_title British Journal of Cancer
container_volume 129
container_issue 1
container_start_page 163
publishDate 2023
institution Swansea University
issn 0007-0920
1532-1827
doi_str_mv 10.1038/s41416-023-02274-2
publisher Springer Science and Business Media LLC
college_str Faculty of Medicine, Health and Life Sciences
hierarchytype
hierarchy_top_id facultyofmedicinehealthandlifesciences
hierarchy_top_title Faculty of Medicine, Health and Life Sciences
hierarchy_parent_id facultyofmedicinehealthandlifesciences
hierarchy_parent_title Faculty of Medicine, Health and Life Sciences
department_str Swansea University Medical School - Biomedical Science{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Biomedical Science
url http://dx.doi.org/10.1038/s41416-023-02274-2
document_store_str 1
active_str 0
description Background: Epigenomic dysregulation has been linked to solid tumour malignancies, including ovarian cancers. Profiling of re-programmed enhancer locations associated with disease has the potential to improve stratification and thus therapeutic choices. Ovarian cancers are subdivided into histological subtypes that have significant molecular and clinical differences, with high-grade serous carcinoma representing the most common and aggressive subtype. Methods: We interrogated the enhancer landscape(s) of normal ovary and subtype-specific ovarian cancer states using publicly available data. With an initial focus on H3K27ac histone mark, we developed a computational pipeline to predict drug compound activity based on epigenomic stratification. Lastly, we substantiated our predictions in vitro using patient-derived clinical samples and cell lines. Results: Using our in silico approach, we highlighted recurrent and privative enhancer landscapes and identified the differential enrichment of a total of 164 transcription factors involved in 201 protein complexes across the subtypes. We pinpointed SNS-032 and EHMT2 inhibitors BIX-01294 and UNC0646 as therapeutic candidates in high-grade serous carcinoma, as well as probed the efficacy of specific inhibitors in vitro. Conclusion: Here, we report the first attempt to exploit ovarian cancer epigenomic landscapes for drug discovery. This computational pipeline holds enormous potential for translating epigenomic profiling into therapeutic leads.
published_date 2023-07-27T20:34:18Z
_version_ 1822073247745703936
score 11.048302