Journal article 447 views 58 downloads
Evaluation of endpoints for the study and diagnosis of mitochondrial toxicity and disease: a narrative review
Mutagenesis, Volume: 38, Issue: 3
Swansea University Authors: Pash Gharti, Jessica Fletcher , Katherine Chapman
-
PDF | Version of Record
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Download (213.93KB)
DOI (Published version): 10.1093/mutage/gead010
Abstract
Mitochondrial DNA mutation and toxicity have been linked to several inherited and acquired diseases; however, these are challenging to diagnose and characterize due to clinical and genetic heterogeneity. This review investigates current techniques for the analysis of mitochondrial perturbations, and...
Published in: | Mutagenesis |
---|---|
ISSN: | 0267-8357 1464-3804 |
Published: |
Oxford University Press (OUP)
2023
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa63343 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract: |
Mitochondrial DNA mutation and toxicity have been linked to several inherited and acquired diseases; however, these are challenging to diagnose and characterize due to clinical and genetic heterogeneity. This review investigates current techniques for the analysis of mitochondrial perturbations, and novel, emerging endpoints for routine application within the clinical setting. Particular focus is given to the biochemistry of the mitochondria influencing each endpoint and the relation of these to toxicity. Current approaches such as the use of metabolic markers (e.g. lactate production), and muscle biopsies to measure mitochondrial proteins were found to lack specificity. Newly emerging identified endpoints were: fibroblast growth factor-21, glucose uptake, mitochondrial membrane potential, mitochondrial morphology, mtDNA heteroplasmy, and mutation of mtDNA and nuclear DNA. Owed to the advancement in genetic analysis techniques, it is suggested by this review that genotypic endpoints of mtDNA mutation and heteroplasmy show particular promise as indicators of mitochondrial disease. It is, however, acknowledged that any single endpoint in isolation offers limited information; therefore, it is recommended that analysis of several endpoints simultaneously will offer the greatest benefit in terms of disease diagnosis and study. It is hoped that this review further highlights the need for advancement in understanding mitochondrial disease. |
---|---|
College: |
Faculty of Medicine, Health and Life Sciences |
Funders: |
Swansea University |
Issue: |
3 |