Journal article 22189 views 6 downloads

Targeting and Sensitization of Breast Cancer Cells to Killing with a Novel Interleukin-13 Receptor α2-Specific Hybrid Cytolytic Peptide

Riaz Jannoo, William Walker, Venkat Kanamarlapudi Orcid Logo

Cancers, Volume: 15, Issue: 10, Start page: 2772

Swansea University Author: Venkat Kanamarlapudi Orcid Logo

  • cancers-15-02772-v2.pdf

    PDF | Version of Record

    © 2023 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

    Download (3.06MB)

Abstract

Highly metastatic breast cancers, such as triple-negative subtypes (TNBC), require the most effective treatments. Since interleukin-13 receptor (IL-13R)α2 is reportedly over-expressed in some cancers, we investigated here its expression and the feasibility of therapeutically targeting this receptor...

Full description

Published in: Cancers
ISSN: 2072-6694
Published: MDPI AG 2023
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa63511
Abstract: Highly metastatic breast cancers, such as triple-negative subtypes (TNBC), require the most effective treatments. Since interleukin-13 receptor (IL-13R)α2 is reportedly over-expressed in some cancers, we investigated here its expression and the feasibility of therapeutically targeting this receptor in breast cancer using a novel hybrid cytolytic peptide (Pep-1-Phor21) consisting of IL-13Rα2-binding (Pep-1) and cytolytic (Phor21) domains. This study demonstrates that particularly TNBC tissues and cells display the prominent expression of IL-13Rα2. Furthermore, Pep-1-Phor21 induced the rapid necrosis of tumor cells expressing cell-surface IL-13Rα2. Notably, IL-13Rα2 expression was found to be epigenetically regulated in breast cancer cells in that the inhibition of histone deacetylase (HDAC) or DNA methyltransferase (DNMT) upregulated IL-13Rα2 expression, thereby sensitizing them to Pep-1-Phor21. IL-13Rα2-negative non-malignant cells were refractory to these epigenetic effects. Consistent with its cytolytic activity, Pep-1-Phor21 readily destroyed IL-13Rα2-expressing breast cancer spheroids with HDAC or DNMT inhibition, further enhancing cytolytic activity. Therefore, the Pep-1-Phor21-mediated targeting of IL-13Rα2 is a potentially novel therapeutic strategy for TNBC. Given that tumor cells can be selectively sensitized to Pep-1-Phor21 via the epigenetic up-regulation of IL-13Rα2, a combined adjuvant approach involving Pep-1-Phor21 and epigenetic inhibitors may be an effective strategy.
Item Description: Correction to article available at https://doi.org/10.3390/cancers16051006
Keywords: IL-13Rα2; TNBC; cytolytic peptide; cytotoxic; adjuvant; epigenetic; cancer therapy
College: Faculty of Medicine, Health and Life Sciences
Issue: 10
Start Page: 2772