No Cover Image

Journal article 299 views 60 downloads

On the algebra of elliptic curves

Tomasz Brzezinski Orcid Logo

Proceedings of the Edinburgh Mathematical Society, Volume: 66, Issue: 2, Pages: 548 - 556

Swansea University Author: Tomasz Brzezinski Orcid Logo

  • 63749.VOR.pdf

    PDF | Version of Record

    © The Author(s), 2023. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence.

    Download (413.34KB)

Abstract

It is argued that a nonsingular elliptic curve admits a natural or fundamental abelian heap structure uniquely determined by the curve itself. It is shown that the set of complex analytic or rational functions from a nonsingular elliptic curve to itself is a truss arising from endomorphisms of this...

Full description

Published in: Proceedings of the Edinburgh Mathematical Society
ISSN: 0013-0915 1464-3839
Published: Cambridge University Press (CUP) 2023
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa63749
first_indexed 2023-06-29T08:33:16Z
last_indexed 2024-11-25T14:12:51Z
id cronfa63749
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2024-09-30T16:31:11.7536164</datestamp><bib-version>v2</bib-version><id>63749</id><entry>2023-06-29</entry><title>On the algebra of elliptic curves</title><swanseaauthors><author><sid>30466d840b59627325596fbbb2c82754</sid><ORCID>0000-0001-6270-3439</ORCID><firstname>Tomasz</firstname><surname>Brzezinski</surname><name>Tomasz Brzezinski</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-06-29</date><deptcode>MACS</deptcode><abstract>It is argued that a nonsingular elliptic curve admits a natural or fundamental abelian heap structure uniquely determined by the curve itself. It is shown that the set of complex analytic or rational functions from a nonsingular elliptic curve to itself is a truss arising from endomorphisms of this heap.</abstract><type>Journal Article</type><journal>Proceedings of the Edinburgh Mathematical Society</journal><volume>66</volume><journalNumber>2</journalNumber><paginationStart>548</paginationStart><paginationEnd>556</paginationEnd><publisher>Cambridge University Press (CUP)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0013-0915</issnPrint><issnElectronic>1464-3839</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-05-01</publishedDate><doi>10.1017/s0013091523000275</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>Swansea University</funders><projectreference/><lastEdited>2024-09-30T16:31:11.7536164</lastEdited><Created>2023-06-29T09:27:49.4131628</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Tomasz</firstname><surname>Brzezinski</surname><orcid>0000-0001-6270-3439</orcid><order>1</order></author></authors><documents><document><filename>63749__28157__c051c91b74df408593ff3495396a1f03.pdf</filename><originalFilename>63749.VOR.pdf</originalFilename><uploaded>2023-07-21T11:47:50.3773300</uploaded><type>Output</type><contentLength>423262</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; The Author(s), 2023. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2024-09-30T16:31:11.7536164 v2 63749 2023-06-29 On the algebra of elliptic curves 30466d840b59627325596fbbb2c82754 0000-0001-6270-3439 Tomasz Brzezinski Tomasz Brzezinski true false 2023-06-29 MACS It is argued that a nonsingular elliptic curve admits a natural or fundamental abelian heap structure uniquely determined by the curve itself. It is shown that the set of complex analytic or rational functions from a nonsingular elliptic curve to itself is a truss arising from endomorphisms of this heap. Journal Article Proceedings of the Edinburgh Mathematical Society 66 2 548 556 Cambridge University Press (CUP) 0013-0915 1464-3839 1 5 2023 2023-05-01 10.1017/s0013091523000275 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University SU Library paid the OA fee (TA Institutional Deal) Swansea University 2024-09-30T16:31:11.7536164 2023-06-29T09:27:49.4131628 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Tomasz Brzezinski 0000-0001-6270-3439 1 63749__28157__c051c91b74df408593ff3495396a1f03.pdf 63749.VOR.pdf 2023-07-21T11:47:50.3773300 Output 423262 application/pdf Version of Record true © The Author(s), 2023. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence. true eng https://creativecommons.org/licenses/by/4.0/
title On the algebra of elliptic curves
spellingShingle On the algebra of elliptic curves
Tomasz Brzezinski
title_short On the algebra of elliptic curves
title_full On the algebra of elliptic curves
title_fullStr On the algebra of elliptic curves
title_full_unstemmed On the algebra of elliptic curves
title_sort On the algebra of elliptic curves
author_id_str_mv 30466d840b59627325596fbbb2c82754
author_id_fullname_str_mv 30466d840b59627325596fbbb2c82754_***_Tomasz Brzezinski
author Tomasz Brzezinski
author2 Tomasz Brzezinski
format Journal article
container_title Proceedings of the Edinburgh Mathematical Society
container_volume 66
container_issue 2
container_start_page 548
publishDate 2023
institution Swansea University
issn 0013-0915
1464-3839
doi_str_mv 10.1017/s0013091523000275
publisher Cambridge University Press (CUP)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 1
active_str 0
description It is argued that a nonsingular elliptic curve admits a natural or fundamental abelian heap structure uniquely determined by the curve itself. It is shown that the set of complex analytic or rational functions from a nonsingular elliptic curve to itself is a truss arising from endomorphisms of this heap.
published_date 2023-05-01T14:26:46Z
_version_ 1821959526800162816
score 11.048149