Journal article 299 views 60 downloads
On the algebra of elliptic curves
Proceedings of the Edinburgh Mathematical Society, Volume: 66, Issue: 2, Pages: 548 - 556
Swansea University Author: Tomasz Brzezinski
-
PDF | Version of Record
© The Author(s), 2023. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence.
Download (413.34KB)
DOI (Published version): 10.1017/s0013091523000275
Abstract
It is argued that a nonsingular elliptic curve admits a natural or fundamental abelian heap structure uniquely determined by the curve itself. It is shown that the set of complex analytic or rational functions from a nonsingular elliptic curve to itself is a truss arising from endomorphisms of this...
Published in: | Proceedings of the Edinburgh Mathematical Society |
---|---|
ISSN: | 0013-0915 1464-3839 |
Published: |
Cambridge University Press (CUP)
2023
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa63749 |
first_indexed |
2023-06-29T08:33:16Z |
---|---|
last_indexed |
2024-11-25T14:12:51Z |
id |
cronfa63749 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-09-30T16:31:11.7536164</datestamp><bib-version>v2</bib-version><id>63749</id><entry>2023-06-29</entry><title>On the algebra of elliptic curves</title><swanseaauthors><author><sid>30466d840b59627325596fbbb2c82754</sid><ORCID>0000-0001-6270-3439</ORCID><firstname>Tomasz</firstname><surname>Brzezinski</surname><name>Tomasz Brzezinski</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-06-29</date><deptcode>MACS</deptcode><abstract>It is argued that a nonsingular elliptic curve admits a natural or fundamental abelian heap structure uniquely determined by the curve itself. It is shown that the set of complex analytic or rational functions from a nonsingular elliptic curve to itself is a truss arising from endomorphisms of this heap.</abstract><type>Journal Article</type><journal>Proceedings of the Edinburgh Mathematical Society</journal><volume>66</volume><journalNumber>2</journalNumber><paginationStart>548</paginationStart><paginationEnd>556</paginationEnd><publisher>Cambridge University Press (CUP)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0013-0915</issnPrint><issnElectronic>1464-3839</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-05-01</publishedDate><doi>10.1017/s0013091523000275</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>Swansea University</funders><projectreference/><lastEdited>2024-09-30T16:31:11.7536164</lastEdited><Created>2023-06-29T09:27:49.4131628</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Tomasz</firstname><surname>Brzezinski</surname><orcid>0000-0001-6270-3439</orcid><order>1</order></author></authors><documents><document><filename>63749__28157__c051c91b74df408593ff3495396a1f03.pdf</filename><originalFilename>63749.VOR.pdf</originalFilename><uploaded>2023-07-21T11:47:50.3773300</uploaded><type>Output</type><contentLength>423262</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© The Author(s), 2023. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2024-09-30T16:31:11.7536164 v2 63749 2023-06-29 On the algebra of elliptic curves 30466d840b59627325596fbbb2c82754 0000-0001-6270-3439 Tomasz Brzezinski Tomasz Brzezinski true false 2023-06-29 MACS It is argued that a nonsingular elliptic curve admits a natural or fundamental abelian heap structure uniquely determined by the curve itself. It is shown that the set of complex analytic or rational functions from a nonsingular elliptic curve to itself is a truss arising from endomorphisms of this heap. Journal Article Proceedings of the Edinburgh Mathematical Society 66 2 548 556 Cambridge University Press (CUP) 0013-0915 1464-3839 1 5 2023 2023-05-01 10.1017/s0013091523000275 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University SU Library paid the OA fee (TA Institutional Deal) Swansea University 2024-09-30T16:31:11.7536164 2023-06-29T09:27:49.4131628 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Tomasz Brzezinski 0000-0001-6270-3439 1 63749__28157__c051c91b74df408593ff3495396a1f03.pdf 63749.VOR.pdf 2023-07-21T11:47:50.3773300 Output 423262 application/pdf Version of Record true © The Author(s), 2023. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence. true eng https://creativecommons.org/licenses/by/4.0/ |
title |
On the algebra of elliptic curves |
spellingShingle |
On the algebra of elliptic curves Tomasz Brzezinski |
title_short |
On the algebra of elliptic curves |
title_full |
On the algebra of elliptic curves |
title_fullStr |
On the algebra of elliptic curves |
title_full_unstemmed |
On the algebra of elliptic curves |
title_sort |
On the algebra of elliptic curves |
author_id_str_mv |
30466d840b59627325596fbbb2c82754 |
author_id_fullname_str_mv |
30466d840b59627325596fbbb2c82754_***_Tomasz Brzezinski |
author |
Tomasz Brzezinski |
author2 |
Tomasz Brzezinski |
format |
Journal article |
container_title |
Proceedings of the Edinburgh Mathematical Society |
container_volume |
66 |
container_issue |
2 |
container_start_page |
548 |
publishDate |
2023 |
institution |
Swansea University |
issn |
0013-0915 1464-3839 |
doi_str_mv |
10.1017/s0013091523000275 |
publisher |
Cambridge University Press (CUP) |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
It is argued that a nonsingular elliptic curve admits a natural or fundamental abelian heap structure uniquely determined by the curve itself. It is shown that the set of complex analytic or rational functions from a nonsingular elliptic curve to itself is a truss arising from endomorphisms of this heap. |
published_date |
2023-05-01T14:26:46Z |
_version_ |
1821959526800162816 |
score |
11.048149 |