Journal article 267 views 34 downloads
Experimental Investigation of Wave Propagation Characteristics in Entangled Metallic Wire Materials by Acoustic Emission
Materials, Volume: 16, Issue: 13, Start page: 4723
Swansea University Author: Qicheng Zhang
-
PDF | Version of Record
© The Author(s) 2023. Licensee MDPI, Basel, Switzerland. Distributed under the terms of a Creative Commons Attribution 4.0 License (CC BY 4.0).
Download (12.2MB)
DOI (Published version): 10.3390/ma16134723
Abstract
In this paper, the response characteristics of wave propagation in entangled metallic wire materials (EMWMs) are investigated by acoustic emission. The frequency, amplitude of wave emission, and the pre-compression force of the specimen can be adjusted in the experimental setup. EMWM specimens fabri...
Published in: | Materials |
---|---|
ISSN: | 1996-1944 |
Published: |
MDPI AG
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa63931 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2023-07-24T08:30:24Z |
---|---|
last_indexed |
2023-07-24T08:30:24Z |
id |
cronfa63931 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>63931</id><entry>2023-07-24</entry><title>Experimental Investigation of Wave Propagation Characteristics in Entangled Metallic Wire Materials by Acoustic Emission</title><swanseaauthors><author><sid>8ff09bdb2a479fcc8d203f099b148f69</sid><firstname>Qicheng</firstname><surname>Zhang</surname><name>Qicheng Zhang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-07-24</date><deptcode>FGSEN</deptcode><abstract>In this paper, the response characteristics of wave propagation in entangled metallic wire materials (EMWMs) are investigated by acoustic emission. The frequency, amplitude of wave emission, and the pre-compression force of the specimen can be adjusted in the experimental setup. EMWM specimens fabricated from stainless steel wires and with different design parameters are tested in this work. The results show that waves of different amplitudes propagate in EMWMs with approximate linear characteristics and the fluctuation coefficient of wave passing ratios is calculated below 15%. The response spectrum of passing waves shows a distinct single-peak characteristic, with the peak response at approximately 14 kHz. The parameters of pre-compression force, porosity, wire diameter, helix diameter, specimen height, and the layered structure of specimens have no significant effect on the frequency characteristics but moderately affect the wave passing ratios. Notably, EMWMs exhibit a lower wave passing ratio (ranging from 0.01 to 0.18) compared to aluminum alloy and natural rubber. The characteristics of response spectrums can be successfully reproduced by the finite element simulation. This work demonstrates EMWMs’ potential as an acoustic frequency vibration isolation material, offering excellent performance and engineering design convenience.</abstract><type>Journal Article</type><journal>Materials</journal><volume>16</volume><journalNumber>13</journalNumber><paginationStart>4723</paginationStart><paginationEnd/><publisher>MDPI AG</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1996-1944</issnPrint><issnElectronic/><keywords>Entangled metallic wire material, wave propagation, acoustic emission, response characteristics, parameter analysis, acoustic frequency vibration</keywords><publishedDay>0</publishedDay><publishedMonth>0</publishedMonth><publishedYear>0</publishedYear><publishedDate>0001-01-01</publishedDate><doi>10.3390/ma16134723</doi><url>http://dx.doi.org/10.3390/ma16134723</url><notes>JW 22/08/2023: Published fully OA. Gold exception claimed. Added keywords. REF compliant.</notes><college>COLLEGE NANME</college><department>Science and Engineering - Faculty</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>FGSEN</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>This research was funded by the National Natural Science Foundation of China, grant numbers: 52175072 and 52075018.</funders><projectreference/><lastEdited>2023-09-06T15:44:33.7862970</lastEdited><Created>2023-07-24T09:26:45.1138335</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Yanhong</firstname><surname>Ma</surname><order>1</order></author><author><firstname>Tianyu</firstname><surname>Liang</surname><order>2</order></author><author><firstname>Yongfeng</firstname><surname>Wang</surname><orcid>0000-0002-3476-6552</orcid><order>3</order></author><author><firstname>Qicheng</firstname><surname>Zhang</surname><order>4</order></author><author><firstname>Jie</firstname><surname>Hong</surname><order>5</order></author></authors><documents><document><filename>63931__28160__df6d5772e0a548b5b63db9d64048166a.pdf</filename><originalFilename>63931.pdf</originalFilename><uploaded>2023-07-24T09:30:47.4734272</uploaded><type>Output</type><contentLength>12793539</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© The Author(s) 2023. Licensee MDPI, Basel, Switzerland. Distributed under the terms of a Creative Commons Attribution 4.0 License (CC BY 4.0).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
v2 63931 2023-07-24 Experimental Investigation of Wave Propagation Characteristics in Entangled Metallic Wire Materials by Acoustic Emission 8ff09bdb2a479fcc8d203f099b148f69 Qicheng Zhang Qicheng Zhang true false 2023-07-24 FGSEN In this paper, the response characteristics of wave propagation in entangled metallic wire materials (EMWMs) are investigated by acoustic emission. The frequency, amplitude of wave emission, and the pre-compression force of the specimen can be adjusted in the experimental setup. EMWM specimens fabricated from stainless steel wires and with different design parameters are tested in this work. The results show that waves of different amplitudes propagate in EMWMs with approximate linear characteristics and the fluctuation coefficient of wave passing ratios is calculated below 15%. The response spectrum of passing waves shows a distinct single-peak characteristic, with the peak response at approximately 14 kHz. The parameters of pre-compression force, porosity, wire diameter, helix diameter, specimen height, and the layered structure of specimens have no significant effect on the frequency characteristics but moderately affect the wave passing ratios. Notably, EMWMs exhibit a lower wave passing ratio (ranging from 0.01 to 0.18) compared to aluminum alloy and natural rubber. The characteristics of response spectrums can be successfully reproduced by the finite element simulation. This work demonstrates EMWMs’ potential as an acoustic frequency vibration isolation material, offering excellent performance and engineering design convenience. Journal Article Materials 16 13 4723 MDPI AG 1996-1944 Entangled metallic wire material, wave propagation, acoustic emission, response characteristics, parameter analysis, acoustic frequency vibration 0 0 0 0001-01-01 10.3390/ma16134723 http://dx.doi.org/10.3390/ma16134723 JW 22/08/2023: Published fully OA. Gold exception claimed. Added keywords. REF compliant. COLLEGE NANME Science and Engineering - Faculty COLLEGE CODE FGSEN Swansea University This research was funded by the National Natural Science Foundation of China, grant numbers: 52175072 and 52075018. 2023-09-06T15:44:33.7862970 2023-07-24T09:26:45.1138335 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Yanhong Ma 1 Tianyu Liang 2 Yongfeng Wang 0000-0002-3476-6552 3 Qicheng Zhang 4 Jie Hong 5 63931__28160__df6d5772e0a548b5b63db9d64048166a.pdf 63931.pdf 2023-07-24T09:30:47.4734272 Output 12793539 application/pdf Version of Record true © The Author(s) 2023. Licensee MDPI, Basel, Switzerland. Distributed under the terms of a Creative Commons Attribution 4.0 License (CC BY 4.0). true eng https://creativecommons.org/licenses/by/4.0/ |
title |
Experimental Investigation of Wave Propagation Characteristics in Entangled Metallic Wire Materials by Acoustic Emission |
spellingShingle |
Experimental Investigation of Wave Propagation Characteristics in Entangled Metallic Wire Materials by Acoustic Emission Qicheng Zhang |
title_short |
Experimental Investigation of Wave Propagation Characteristics in Entangled Metallic Wire Materials by Acoustic Emission |
title_full |
Experimental Investigation of Wave Propagation Characteristics in Entangled Metallic Wire Materials by Acoustic Emission |
title_fullStr |
Experimental Investigation of Wave Propagation Characteristics in Entangled Metallic Wire Materials by Acoustic Emission |
title_full_unstemmed |
Experimental Investigation of Wave Propagation Characteristics in Entangled Metallic Wire Materials by Acoustic Emission |
title_sort |
Experimental Investigation of Wave Propagation Characteristics in Entangled Metallic Wire Materials by Acoustic Emission |
author_id_str_mv |
8ff09bdb2a479fcc8d203f099b148f69 |
author_id_fullname_str_mv |
8ff09bdb2a479fcc8d203f099b148f69_***_Qicheng Zhang |
author |
Qicheng Zhang |
author2 |
Yanhong Ma Tianyu Liang Yongfeng Wang Qicheng Zhang Jie Hong |
format |
Journal article |
container_title |
Materials |
container_volume |
16 |
container_issue |
13 |
container_start_page |
4723 |
institution |
Swansea University |
issn |
1996-1944 |
doi_str_mv |
10.3390/ma16134723 |
publisher |
MDPI AG |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
url |
http://dx.doi.org/10.3390/ma16134723 |
document_store_str |
1 |
active_str |
0 |
description |
In this paper, the response characteristics of wave propagation in entangled metallic wire materials (EMWMs) are investigated by acoustic emission. The frequency, amplitude of wave emission, and the pre-compression force of the specimen can be adjusted in the experimental setup. EMWM specimens fabricated from stainless steel wires and with different design parameters are tested in this work. The results show that waves of different amplitudes propagate in EMWMs with approximate linear characteristics and the fluctuation coefficient of wave passing ratios is calculated below 15%. The response spectrum of passing waves shows a distinct single-peak characteristic, with the peak response at approximately 14 kHz. The parameters of pre-compression force, porosity, wire diameter, helix diameter, specimen height, and the layered structure of specimens have no significant effect on the frequency characteristics but moderately affect the wave passing ratios. Notably, EMWMs exhibit a lower wave passing ratio (ranging from 0.01 to 0.18) compared to aluminum alloy and natural rubber. The characteristics of response spectrums can be successfully reproduced by the finite element simulation. This work demonstrates EMWMs’ potential as an acoustic frequency vibration isolation material, offering excellent performance and engineering design convenience. |
published_date |
0001-01-01T15:44:35Z |
_version_ |
1776299776852099072 |
score |
11.035874 |