Conference Paper/Proceeding/Abstract 711 views
Clinical coding of long Covid in Wales: A cohort study of 3.5 million people using linked health and demographic data
International Journal of Population Data Science, Volume: 8, Issue: 2
Swansea University Authors:
Hoda Abbasizanjani , Stuart Bedston, Ashley Akbari
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.23889/ijpds.v8i2.2308
Abstract
Clinical coding of long Covid in Wales: A cohort study of 3.5 million people using linked health and demographic data
| Published in: | International Journal of Population Data Science |
|---|---|
| ISSN: | 2399-4908 |
| Published: |
Swansea
Swansea University
2023
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa64580 |
| first_indexed |
2023-10-24T09:06:39Z |
|---|---|
| last_indexed |
2024-11-25T14:14:17Z |
| id |
cronfa64580 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-10-24T11:08:46.9434215</datestamp><bib-version>v2</bib-version><id>64580</id><entry>2023-09-20</entry><title>Clinical coding of long Covid in Wales: A cohort study of 3.5 million people using linked health and demographic data</title><swanseaauthors><author><sid>93dd7e747f3118a99566c68592a3ddcc</sid><ORCID>0000-0002-9575-4758</ORCID><firstname>Hoda</firstname><surname>Abbasizanjani</surname><name>Hoda Abbasizanjani</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c79d07eaba5c9515c0df82b372b76a41</sid><firstname>Stuart</firstname><surname>Bedston</surname><name>Stuart Bedston</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>aa1b025ec0243f708bb5eb0a93d6fb52</sid><ORCID>0000-0003-0814-0801</ORCID><firstname>Ashley</firstname><surname>Akbari</surname><name>Ashley Akbari</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-09-20</date><deptcode>MEDS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>International Journal of Population Data Science</journal><volume>8</volume><journalNumber>2</journalNumber><paginationStart/><paginationEnd/><publisher>Swansea University</publisher><placeOfPublication>Swansea</placeOfPublication><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2399-4908</issnElectronic><keywords/><publishedDay>14</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-09-14</publishedDate><doi>10.23889/ijpds.v8i2.2308</doi><url>http://dx.doi.org/10.23889/ijpds.v8i2.2308</url><notes>Conference Abstract. ADR UK Conference 2023, 14 - 16 November, Birmingham.</notes><college>COLLEGE NANME</college><department>Medical School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-10-24T11:08:46.9434215</lastEdited><Created>2023-09-20T18:29:00.7779628</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Medicine</level></path><authors><author><firstname>Hoda</firstname><surname>Abbasizanjani</surname><orcid>0000-0002-9575-4758</orcid><order>1</order></author><author><firstname>Stuart</firstname><surname>Bedston</surname><order>2</order></author><author><firstname>Lucy</firstname><surname>Robinson</surname><order>3</order></author><author><firstname>Matthew</firstname><surname>Curds</surname><order>4</order></author><author><firstname>Ashley</firstname><surname>Akbari</surname><orcid>0000-0003-0814-0801</orcid><order>5</order></author></authors><documents/><OutputDurs/></rfc1807> |
| spelling |
2023-10-24T11:08:46.9434215 v2 64580 2023-09-20 Clinical coding of long Covid in Wales: A cohort study of 3.5 million people using linked health and demographic data 93dd7e747f3118a99566c68592a3ddcc 0000-0002-9575-4758 Hoda Abbasizanjani Hoda Abbasizanjani true false c79d07eaba5c9515c0df82b372b76a41 Stuart Bedston Stuart Bedston true false aa1b025ec0243f708bb5eb0a93d6fb52 0000-0003-0814-0801 Ashley Akbari Ashley Akbari true false 2023-09-20 MEDS Conference Paper/Proceeding/Abstract International Journal of Population Data Science 8 2 Swansea University Swansea 2399-4908 14 9 2023 2023-09-14 10.23889/ijpds.v8i2.2308 http://dx.doi.org/10.23889/ijpds.v8i2.2308 Conference Abstract. ADR UK Conference 2023, 14 - 16 November, Birmingham. COLLEGE NANME Medical School COLLEGE CODE MEDS Swansea University 2023-10-24T11:08:46.9434215 2023-09-20T18:29:00.7779628 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Medicine Hoda Abbasizanjani 0000-0002-9575-4758 1 Stuart Bedston 2 Lucy Robinson 3 Matthew Curds 4 Ashley Akbari 0000-0003-0814-0801 5 |
| title |
Clinical coding of long Covid in Wales: A cohort study of 3.5 million people using linked health and demographic data |
| spellingShingle |
Clinical coding of long Covid in Wales: A cohort study of 3.5 million people using linked health and demographic data Hoda Abbasizanjani Stuart Bedston Ashley Akbari |
| title_short |
Clinical coding of long Covid in Wales: A cohort study of 3.5 million people using linked health and demographic data |
| title_full |
Clinical coding of long Covid in Wales: A cohort study of 3.5 million people using linked health and demographic data |
| title_fullStr |
Clinical coding of long Covid in Wales: A cohort study of 3.5 million people using linked health and demographic data |
| title_full_unstemmed |
Clinical coding of long Covid in Wales: A cohort study of 3.5 million people using linked health and demographic data |
| title_sort |
Clinical coding of long Covid in Wales: A cohort study of 3.5 million people using linked health and demographic data |
| author_id_str_mv |
93dd7e747f3118a99566c68592a3ddcc c79d07eaba5c9515c0df82b372b76a41 aa1b025ec0243f708bb5eb0a93d6fb52 |
| author_id_fullname_str_mv |
93dd7e747f3118a99566c68592a3ddcc_***_Hoda Abbasizanjani c79d07eaba5c9515c0df82b372b76a41_***_Stuart Bedston aa1b025ec0243f708bb5eb0a93d6fb52_***_Ashley Akbari |
| author |
Hoda Abbasizanjani Stuart Bedston Ashley Akbari |
| author2 |
Hoda Abbasizanjani Stuart Bedston Lucy Robinson Matthew Curds Ashley Akbari |
| format |
Conference Paper/Proceeding/Abstract |
| container_title |
International Journal of Population Data Science |
| container_volume |
8 |
| container_issue |
2 |
| publishDate |
2023 |
| institution |
Swansea University |
| issn |
2399-4908 |
| doi_str_mv |
10.23889/ijpds.v8i2.2308 |
| publisher |
Swansea University |
| college_str |
Faculty of Medicine, Health and Life Sciences |
| hierarchytype |
|
| hierarchy_top_id |
facultyofmedicinehealthandlifesciences |
| hierarchy_top_title |
Faculty of Medicine, Health and Life Sciences |
| hierarchy_parent_id |
facultyofmedicinehealthandlifesciences |
| hierarchy_parent_title |
Faculty of Medicine, Health and Life Sciences |
| department_str |
Swansea University Medical School - Medicine{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Medicine |
| url |
http://dx.doi.org/10.23889/ijpds.v8i2.2308 |
| document_store_str |
0 |
| active_str |
0 |
| published_date |
2023-09-14T05:14:19Z |
| _version_ |
1851368783689547776 |
| score |
11.089572 |

