Journal article 433 views 87 downloads
Challenges of Industrial-Scale Testing Infrastructure for Green Hydrogen Technologies
Energies, Volume: 16, Issue: 8, Start page: 3604
Swansea University Authors: Moritz Kuehnel, Sudhagar Pitchaimuthu
-
PDF | Version of Record
Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license
Download (2.68MB)
DOI (Published version): 10.3390/en16083604
Abstract
Green hydrogen is set to become the energy carrier of the future, provided that production technologies such as electrolysis and solar water splitting can be scaled to global dimensions. Testing these hydrogen technologies on the MW scale requires the development of dedicated new test facilities for...
Published in: | Energies |
---|---|
ISSN: | 1996-1073 |
Published: |
MDPI AG
2023
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa65138 |
Abstract: |
Green hydrogen is set to become the energy carrier of the future, provided that production technologies such as electrolysis and solar water splitting can be scaled to global dimensions. Testing these hydrogen technologies on the MW scale requires the development of dedicated new test facilities for which there is no precedent. This perspective highlights the challenges to be met on the path to implementing a test facility for large-scale water electrolysis, photoelectrochemical and photocatalytic water splitting and aims to serve as a much-needed blueprint for future test facilities based on the authors’ own experience in establishing the Hydrogen Lab Leuna. Key aspects to be considered are the electricity and utility requirements of the devices under testing, the analysis of the produced H2 and O2 and the safety regulations for handling large quantities of H2. Choosing the right location is crucial not only for meeting these device requirements, but also for improving financial viability through supplying affordable electricity and providing a remunerated H2 sink to offset the testing costs. Due to their lower TRL and requirement for a light source, large-scale photocatalysis and photoelectrochemistry testing are less developed and the requirements are currently less predictable. |
---|---|
Keywords: |
hydrogen; electrolysis; testing; photocatalysis |
College: |
Faculty of Science and Engineering |
Funders: |
The Hydrogen Lab Leuna was funded by the Investment Bank of Saxony-Anhalt, the European Regional Development Fund and the German Federal Ministry of Education and Research (Grant numbers AZ 82042-30/3-63-1; 1755/1613; 38-26531-23/1/22403/2019). |
Issue: |
8 |
Start Page: |
3604 |