Journal article 343 views 27 downloads
Quantum geodesics in quantum mechanics
Journal of Mathematical Physics, Volume: 65, Issue: 1
Swansea University Author: Edwin Beggs
-
PDF | Version of Record
© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
Download (5.63MB)
DOI (Published version): 10.1063/5.0154781
Abstract
We show that the standard Heisenberg algebra of quantum mechanics admits a noncommutative differential calculus $\Omega^1$ depending on the Hamiltonian $p^2/2m + V(x)$, and a flat quantum connection $\nabla$ with torsion such that a previous quantum-geometric formulation of flow along autoparallel c...
Published in: | Journal of Mathematical Physics |
---|---|
ISSN: | 0022-2488 1089-7658 |
Published: |
AIP Publishing
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa65249 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2023-12-07T21:02:55Z |
---|---|
last_indexed |
2023-12-07T21:02:55Z |
id |
cronfa65249 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>65249</id><entry>2023-12-07</entry><title>Quantum geodesics in quantum mechanics</title><swanseaauthors><author><sid>a0062e7cf6d68f05151560cdf9d14e75</sid><ORCID>0000-0002-3139-0983</ORCID><firstname>Edwin</firstname><surname>Beggs</surname><name>Edwin Beggs</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-12-07</date><deptcode>SMA</deptcode><abstract>We show that the standard Heisenberg algebra of quantum mechanics admits a noncommutative differential calculus $\Omega^1$ depending on the Hamiltonian $p^2/2m + V(x)$, and a flat quantum connection $\nabla$ with torsion such that a previous quantum-geometric formulation of flow along autoparallel curves (or `geodesics') is exactly Schr\"odinger's equation. The connection $\nabla$ preserves a non-symmetric quantum metric given by the canonical symplectic structure lifted to a rank (0,2) tensor on the extended phase space where we adjoin a time variable. We also apply the same approach to obtain a novel flow generated by the Klein Gordon operator on Minkowski spacetime with a background electromagnetic field, by formulating quantum `geodesics' on the relativistic Heisenberg algebra with proper time for the external geodesic parameter. Examples include quantum geodesics that look like a relativistic free particle wave packet and a hydrogen-like atom.</abstract><type>Journal Article</type><journal>Journal of Mathematical Physics</journal><volume>65</volume><journalNumber>1</journalNumber><paginationStart/><paginationEnd/><publisher>AIP Publishing</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0022-2488</issnPrint><issnElectronic>1089-7658</issnElectronic><keywords/><publishedDay>5</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-01-05</publishedDate><doi>10.1063/5.0154781</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SMA</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders/><projectreference/><lastEdited>2024-04-10T11:11:14.0721235</lastEdited><Created>2023-12-07T20:52:33.3564189</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Edwin</firstname><surname>Beggs</surname><orcid>0000-0002-3139-0983</orcid><order>1</order></author><author><firstname>Shahn</firstname><surname>Majid</surname><orcid>0000-0003-1657-5434</orcid><order>2</order></author></authors><documents><document><filename>65249__29453__15eb29ae3a2d4a029fedb8b1870f4e34.pdf</filename><originalFilename>012101_1_5.0154781.pdf</originalFilename><uploaded>2024-01-17T16:28:44.6586946</uploaded><type>Output</type><contentLength>5902837</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/).</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
v2 65249 2023-12-07 Quantum geodesics in quantum mechanics a0062e7cf6d68f05151560cdf9d14e75 0000-0002-3139-0983 Edwin Beggs Edwin Beggs true false 2023-12-07 SMA We show that the standard Heisenberg algebra of quantum mechanics admits a noncommutative differential calculus $\Omega^1$ depending on the Hamiltonian $p^2/2m + V(x)$, and a flat quantum connection $\nabla$ with torsion such that a previous quantum-geometric formulation of flow along autoparallel curves (or `geodesics') is exactly Schr\"odinger's equation. The connection $\nabla$ preserves a non-symmetric quantum metric given by the canonical symplectic structure lifted to a rank (0,2) tensor on the extended phase space where we adjoin a time variable. We also apply the same approach to obtain a novel flow generated by the Klein Gordon operator on Minkowski spacetime with a background electromagnetic field, by formulating quantum `geodesics' on the relativistic Heisenberg algebra with proper time for the external geodesic parameter. Examples include quantum geodesics that look like a relativistic free particle wave packet and a hydrogen-like atom. Journal Article Journal of Mathematical Physics 65 1 AIP Publishing 0022-2488 1089-7658 5 1 2024 2024-01-05 10.1063/5.0154781 COLLEGE NANME Mathematics COLLEGE CODE SMA Swansea University SU Library paid the OA fee (TA Institutional Deal) 2024-04-10T11:11:14.0721235 2023-12-07T20:52:33.3564189 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Edwin Beggs 0000-0002-3139-0983 1 Shahn Majid 0000-0003-1657-5434 2 65249__29453__15eb29ae3a2d4a029fedb8b1870f4e34.pdf 012101_1_5.0154781.pdf 2024-01-17T16:28:44.6586946 Output 5902837 application/pdf Version of Record true © 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license true eng http://creativecommons.org/licenses/by/4.0/). |
title |
Quantum geodesics in quantum mechanics |
spellingShingle |
Quantum geodesics in quantum mechanics Edwin Beggs |
title_short |
Quantum geodesics in quantum mechanics |
title_full |
Quantum geodesics in quantum mechanics |
title_fullStr |
Quantum geodesics in quantum mechanics |
title_full_unstemmed |
Quantum geodesics in quantum mechanics |
title_sort |
Quantum geodesics in quantum mechanics |
author_id_str_mv |
a0062e7cf6d68f05151560cdf9d14e75 |
author_id_fullname_str_mv |
a0062e7cf6d68f05151560cdf9d14e75_***_Edwin Beggs |
author |
Edwin Beggs |
author2 |
Edwin Beggs Shahn Majid |
format |
Journal article |
container_title |
Journal of Mathematical Physics |
container_volume |
65 |
container_issue |
1 |
publishDate |
2024 |
institution |
Swansea University |
issn |
0022-2488 1089-7658 |
doi_str_mv |
10.1063/5.0154781 |
publisher |
AIP Publishing |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
We show that the standard Heisenberg algebra of quantum mechanics admits a noncommutative differential calculus $\Omega^1$ depending on the Hamiltonian $p^2/2m + V(x)$, and a flat quantum connection $\nabla$ with torsion such that a previous quantum-geometric formulation of flow along autoparallel curves (or `geodesics') is exactly Schr\"odinger's equation. The connection $\nabla$ preserves a non-symmetric quantum metric given by the canonical symplectic structure lifted to a rank (0,2) tensor on the extended phase space where we adjoin a time variable. We also apply the same approach to obtain a novel flow generated by the Klein Gordon operator on Minkowski spacetime with a background electromagnetic field, by formulating quantum `geodesics' on the relativistic Heisenberg algebra with proper time for the external geodesic parameter. Examples include quantum geodesics that look like a relativistic free particle wave packet and a hydrogen-like atom. |
published_date |
2024-01-05T11:11:11Z |
_version_ |
1795942117527257088 |
score |
11.035634 |