No Cover Image

Journal article 334 views

Room temperature plasmonic lasing in a continuous wave operation mode from an InGaN/GaN single nanorod with a low threshold

Yaonan Hou, P. Renwick, B. Liu, J. Bai, T. Wang

Scientific Reports, Volume: 4, Issue: 1

Swansea University Author: Yaonan Hou

Full text not available from this repository: check for access using links below.

Check full text

DOI (Published version): 10.1038/srep05014

Abstract

It is crucial to fabricate nano photonic devices such as nanolasers in order to meet the requirements for the integration of photonic and electronic circuits on the nanometre scale. The great difficulty is to break down a bottleneck as a result of the diffraction limit of light. Nanolasers on a subw...

Full description

Published in: Scientific Reports
ISSN: 2045-2322
Published: Springer Science and Business Media LLC 2014
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa65315
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: It is crucial to fabricate nano photonic devices such as nanolasers in order to meet the requirements for the integration of photonic and electronic circuits on the nanometre scale. The great difficulty is to break down a bottleneck as a result of the diffraction limit of light. Nanolasers on a subwavelength scale could potentially be fabricated based on the principle of surface plasmon amplification by stimulated emission of radiation (SPASER). However, a number of technological challenges will have to be overcome in order to achieve a SPASER with a low threshold, allowing for a continuous wave (cw) operation at room temperature. We report a nano-SPASER with a record low threshold at room temperature, optically pumped by using a cw diode laser. Our nano-SPASER consists of a single InGaN/GaN nanorod on a thin SiO2 spacer layer on a silver film. The nanorod containing InGaN/GaN multi-quantum-wells is fabricated by means of a cost-effective post-growth fabrication approach. The geometry of the nanorod/dielectric spacer/plasmonic metal composite allows us to have accurate control of the surface plasmon coupling, offering an opportunity to determine the optimal thickness of the dielectric spacer. This approach will open up a route for further fabrication of electrically injected plasmonic lasers.
College: Faculty of Science and Engineering
Issue: 1