No Cover Image

Journal article 292 views

A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations

Sergi Sanchez-Gamero, Oubay Hassan Orcid Logo, Rubén Sevilla Orcid Logo

International Journal of Computational Fluid Dynamics

Swansea University Authors: Oubay Hassan Orcid Logo, Rubén Sevilla Orcid Logo

Full text not available from this repository: check for access using links below.

DOI (Published version): 10.1080/10618562.2024.2306941

Published in: International Journal of Computational Fluid Dynamics
Published: Taylor and Francis
URI: https://cronfa.swan.ac.uk/Record/cronfa65507
first_indexed 2024-01-24T16:11:10Z
last_indexed 2024-11-25T14:16:14Z
id cronfa65507
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2024-11-06T12:30:08.2916906</datestamp><bib-version>v2</bib-version><id>65507</id><entry>2024-01-24</entry><title>A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations</title><swanseaauthors><author><sid>07479d73eba3773d8904cbfbacc57c5b</sid><ORCID>0000-0001-7472-3218</ORCID><firstname>Oubay</firstname><surname>Hassan</surname><name>Oubay Hassan</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b542c87f1b891262844e95a682f045b6</sid><ORCID>0000-0002-0061-6214</ORCID><firstname>Rub&#xE9;n</firstname><surname>Sevilla</surname><name>Rub&#xE9;n Sevilla</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-01-24</date><deptcode>ACEM</deptcode><abstract/><type>Journal Article</type><journal>International Journal of Computational Fluid Dynamics</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher>Taylor and Francis</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords/><publishedDay>0</publishedDay><publishedMonth>0</publishedMonth><publishedYear>0</publishedYear><publishedDate>0001-01-01</publishedDate><doi>10.1080/10618562.2024.2306941</doi><url/><notes>Preprint submitted to IJCFD</notes><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders/><projectreference/><lastEdited>2024-11-06T12:30:08.2916906</lastEdited><Created>2024-01-24T16:09:01.4872012</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Sergi</firstname><surname>Sanchez-Gamero</surname><order>1</order></author><author><firstname>Oubay</firstname><surname>Hassan</surname><orcid>0000-0001-7472-3218</orcid><order>2</order></author><author><firstname>Rub&#xE9;n</firstname><surname>Sevilla</surname><orcid>0000-0002-0061-6214</orcid><order>3</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2024-11-06T12:30:08.2916906 v2 65507 2024-01-24 A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations 07479d73eba3773d8904cbfbacc57c5b 0000-0001-7472-3218 Oubay Hassan Oubay Hassan true false b542c87f1b891262844e95a682f045b6 0000-0002-0061-6214 Rubén Sevilla Rubén Sevilla true false 2024-01-24 ACEM Journal Article International Journal of Computational Fluid Dynamics Taylor and Francis 0 0 0 0001-01-01 10.1080/10618562.2024.2306941 Preprint submitted to IJCFD COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University SU Library paid the OA fee (TA Institutional Deal) 2024-11-06T12:30:08.2916906 2024-01-24T16:09:01.4872012 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Sergi Sanchez-Gamero 1 Oubay Hassan 0000-0001-7472-3218 2 Rubén Sevilla 0000-0002-0061-6214 3
title A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations
spellingShingle A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations
Oubay Hassan
Rubén Sevilla
title_short A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations
title_full A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations
title_fullStr A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations
title_full_unstemmed A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations
title_sort A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations
author_id_str_mv 07479d73eba3773d8904cbfbacc57c5b
b542c87f1b891262844e95a682f045b6
author_id_fullname_str_mv 07479d73eba3773d8904cbfbacc57c5b_***_Oubay Hassan
b542c87f1b891262844e95a682f045b6_***_Rubén Sevilla
author Oubay Hassan
Rubén Sevilla
author2 Sergi Sanchez-Gamero
Oubay Hassan
Rubén Sevilla
format Journal article
container_title International Journal of Computational Fluid Dynamics
institution Swansea University
doi_str_mv 10.1080/10618562.2024.2306941
publisher Taylor and Francis
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering
document_store_str 0
active_str 0
published_date 0001-01-01T02:47:41Z
_version_ 1822006141438132224
score 11.048042