No Cover Image

Journal article 82 views 19 downloads

Individual variation in home‐range across an ocean basin and links to habitat quality and management

Graeme C. Hays Orcid Logo, Alex Rattray Orcid Logo, Takahiro Shimada Orcid Logo, Nicole Esteban Orcid Logo

Journal of Applied Ecology, Volume: 61, Issue: 4, Pages: 658 - 668

Swansea University Author: Nicole Esteban Orcid Logo

  • Hays_Rattray_Shimada_Esteban_2024_AppliedEcol_Homerange_variation_green-turtles_seagrass-quality.pdf

    PDF | Version of Record

    © 2024 The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License.

    Download (1.59MB)

Abstract

Overgrazing may lead to management intervention (e.g. culling, animal relocation) to try and prevent habitat destruction. Overgrazing leading to seagrass meadow collapse has been recorded for green turtles (Chelonia mydas) at several sites around the world, although the generality of this phenomenon...

Full description

Published in: Journal of Applied Ecology
ISSN: 0021-8901 1365-2664
Published: Wiley 2024
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa65751
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Overgrazing may lead to management intervention (e.g. culling, animal relocation) to try and prevent habitat destruction. Overgrazing leading to seagrass meadow collapse has been recorded for green turtles (Chelonia mydas) at several sites around the world, although the generality of this phenomenon and the need for intervention to prevent widespread seagrass destruction is unknown.Where turtles have degraded seagrass meadows, home-ranges are expected to be large and turtles will relocate as meadows are destroyed. We used high resolution Fastloc GPS tracking (n = 32 individuals, mean = 171 days per individual, SD = 99) to record the home-range of adult green turtles at foraging sites spanning 4523 km of longitude across the Western Indian Ocean. Contrary to predictions if overgrazing was occurring, we recorded small home-ranges and turtles rarely relocated their daytime foraging areas.Based on all locations received, the mean 50% and 95% utilisation distributions (UD50 and UD95) were 2.4 km2 (SD = 2.7) and 15.4 km2 (SD = 17.7). Space use was often particularly small at night, when turtles rest, averaging 11% of the overall space use with the mean night-time UD50 and UD95 being 0.15 km2 (SD = 0.1) and 1.1 km2 (SD = 0.8), respectively. Variation in home-range across individuals was not influenced by the data volume (number of locations per day, duration of tracking) or animal size (carapace length) but increased significantly as the distance between the centre of day and night areas increased, that is individuals that had a larger daily commute had the larger home-ranges.Synthesis and applications. Comparisons with home-range estimates from 16 previous studies, showed that those we recorded are among the smallest for adult green turtles globally. These results suggest that despite population size increases at several major nesting sites in the Western Indian Ocean, green turtles are generally not destroying the seagrass meadows on which they forage and so management intervention to prevent overgrazing is not needed. In this way, our work illustrates how movement data may inform management decisions for green turtles. Further targeted work on the seagrass ecosystem health could help confirm this suggestion.
Keywords: biologging, Chagos, home-range, marine protected area, MPA, overgrazing, space use
College: Faculty of Science and Engineering
Funders: Fondation Bertarelli. Grant Numbers: BPMS-2017-4, 820633 Open access publishing facilitated by Deakin University, as part of the Wiley - Deakin University agreement via the Council of Australian University Librarians.
Issue: 4
Start Page: 658
End Page: 668