No Cover Image

Conference Paper/Proceeding/Abstract 372 views

Forecasting Climate Transition Regulatory and Market Risk Variables with Machine Learning

Juan F. Pérez-Pérez, Isis Bonet Cruz, María Solange Sánchez-Pinzón, Fabio Caraffini Orcid Logo, Christian Lochmuller

2023 IEEE International Symposium on Technology and Society (ISTAS)

Swansea University Author: Fabio Caraffini Orcid Logo

Full text not available from this repository: check for access using links below.

Published in: 2023 IEEE International Symposium on Technology and Society (ISTAS)
ISBN: 979-8-3503-2487-7 979-8-3503-2486-0
ISSN: 2158-3404 2158-3412
Published: IEEE 2023
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa65823
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2024-03-12T13:27:39Z
last_indexed 2024-03-12T13:27:39Z
id cronfa65823
recordtype SURis
fullrecord <?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>65823</id><entry>2024-03-12</entry><title>Forecasting Climate Transition Regulatory and Market Risk Variables with Machine Learning</title><swanseaauthors><author><sid>d0b8d4e63d512d4d67a02a23dd20dfdb</sid><ORCID>0000-0001-9199-7368</ORCID><firstname>Fabio</firstname><surname>Caraffini</surname><name>Fabio Caraffini</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-03-12</date><deptcode>SCS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>2023 IEEE International Symposium on Technology and Society (ISTAS)</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher>IEEE</publisher><placeOfPublication/><isbnPrint>979-8-3503-2487-7</isbnPrint><isbnElectronic>979-8-3503-2486-0</isbnElectronic><issnPrint>2158-3404</issnPrint><issnElectronic>2158-3412</issnElectronic><keywords>Climate transition risk; climate risk; artificial intelligence; machine learning; deep learning; forecast</keywords><publishedDay>7</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-11-07</publishedDate><doi>10.1109/istas57930.2023.10306196</doi><url/><notes/><college>COLLEGE NANME</college><department>Computer Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SCS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2024-04-15T14:49:08.9639030</lastEdited><Created>2024-03-12T13:20:26.8933705</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Juan F.</firstname><surname>Pérez-Pérez</surname><order>1</order></author><author><firstname>Isis Bonet</firstname><surname>Cruz</surname><order>2</order></author><author><firstname>María Solange</firstname><surname>Sánchez-Pinzón</surname><order>3</order></author><author><firstname>Fabio</firstname><surname>Caraffini</surname><orcid>0000-0001-9199-7368</orcid><order>4</order></author><author><firstname>Christian</firstname><surname>Lochmuller</surname><order>5</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling v2 65823 2024-03-12 Forecasting Climate Transition Regulatory and Market Risk Variables with Machine Learning d0b8d4e63d512d4d67a02a23dd20dfdb 0000-0001-9199-7368 Fabio Caraffini Fabio Caraffini true false 2024-03-12 SCS Conference Paper/Proceeding/Abstract 2023 IEEE International Symposium on Technology and Society (ISTAS) IEEE 979-8-3503-2487-7 979-8-3503-2486-0 2158-3404 2158-3412 Climate transition risk; climate risk; artificial intelligence; machine learning; deep learning; forecast 7 11 2023 2023-11-07 10.1109/istas57930.2023.10306196 COLLEGE NANME Computer Science COLLEGE CODE SCS Swansea University 2024-04-15T14:49:08.9639030 2024-03-12T13:20:26.8933705 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Juan F. Pérez-Pérez 1 Isis Bonet Cruz 2 María Solange Sánchez-Pinzón 3 Fabio Caraffini 0000-0001-9199-7368 4 Christian Lochmuller 5
title Forecasting Climate Transition Regulatory and Market Risk Variables with Machine Learning
spellingShingle Forecasting Climate Transition Regulatory and Market Risk Variables with Machine Learning
Fabio Caraffini
title_short Forecasting Climate Transition Regulatory and Market Risk Variables with Machine Learning
title_full Forecasting Climate Transition Regulatory and Market Risk Variables with Machine Learning
title_fullStr Forecasting Climate Transition Regulatory and Market Risk Variables with Machine Learning
title_full_unstemmed Forecasting Climate Transition Regulatory and Market Risk Variables with Machine Learning
title_sort Forecasting Climate Transition Regulatory and Market Risk Variables with Machine Learning
author_id_str_mv d0b8d4e63d512d4d67a02a23dd20dfdb
author_id_fullname_str_mv d0b8d4e63d512d4d67a02a23dd20dfdb_***_Fabio Caraffini
author Fabio Caraffini
author2 Juan F. Pérez-Pérez
Isis Bonet Cruz
María Solange Sánchez-Pinzón
Fabio Caraffini
Christian Lochmuller
format Conference Paper/Proceeding/Abstract
container_title 2023 IEEE International Symposium on Technology and Society (ISTAS)
publishDate 2023
institution Swansea University
isbn 979-8-3503-2487-7
979-8-3503-2486-0
issn 2158-3404
2158-3412
doi_str_mv 10.1109/istas57930.2023.10306196
publisher IEEE
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
document_store_str 0
active_str 0
published_date 2023-11-07T14:49:05Z
_version_ 1796408811448172544
score 11.036706