No Cover Image

Journal article 212 views 119 downloads

Predicting financial distress using multimodal data: An attentive and regularized deep learning method

Wanliu Che, Zhao Wang Orcid Logo, Cuiqing Jiang Orcid Logo, Mohammad Abedin Orcid Logo

Information Processing and Management, Volume: 61, Issue: 4, Start page: 103703

Swansea University Author: Mohammad Abedin Orcid Logo

  • 65837_AAM.pdf

    PDF | Accepted Manuscript

    Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).

    Download (1.78MB)
Published in: Information Processing and Management
ISSN: 0306-4573
Published: Elsevier BV 2024
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa65837
first_indexed 2024-03-14T08:48:51Z
last_indexed 2024-11-25T14:16:58Z
id cronfa65837
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2024-04-18T15:46:11.3375594</datestamp><bib-version>v2</bib-version><id>65837</id><entry>2024-03-14</entry><title>Predicting financial distress using multimodal data: An attentive and regularized deep learning method</title><swanseaauthors><author><sid>4ed8c020eae0c9bec4f5d9495d86d415</sid><ORCID>0000-0002-4688-0619</ORCID><firstname>Mohammad</firstname><surname>Abedin</surname><name>Mohammad Abedin</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-03-14</date><deptcode>CBAE</deptcode><abstract/><type>Journal Article</type><journal>Information Processing and Management</journal><volume>61</volume><journalNumber>4</journalNumber><paginationStart>103703</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0306-4573</issnPrint><issnElectronic/><keywords>Financial distress prediction; Multimodal data; Deep learning; Attention mechanism; Conditional entropy</keywords><publishedDay>1</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-07-01</publishedDate><doi>10.1016/j.ipm.2024.103703</doi><url/><notes/><college>COLLEGE NANME</college><department>Management School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CBAE</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>This work was supported by the National Natural Science Foundation of China (grants 72271073 and 72101073), and the University Synergy Innovation Program of Anhui Province (grant GXXT-2023-063).</funders><projectreference/><lastEdited>2024-04-18T15:46:11.3375594</lastEdited><Created>2024-03-14T08:46:14.2730113</Created><path><level id="1">Faculty of Humanities and Social Sciences</level><level id="2">School of Management - Accounting and Finance</level></path><authors><author><firstname>Wanliu</firstname><surname>Che</surname><order>1</order></author><author><firstname>Zhao</firstname><surname>Wang</surname><orcid>0000-0002-3352-3655</orcid><order>2</order></author><author><firstname>Cuiqing</firstname><surname>Jiang</surname><orcid>0000-0001-6492-4550</orcid><order>3</order></author><author><firstname>Mohammad</firstname><surname>Abedin</surname><orcid>0000-0002-4688-0619</orcid><order>4</order></author></authors><documents><document><filename>65837__30061__5e424b2f4f7b4de89408bbef9d89ae8b.pdf</filename><originalFilename>65837_AAM.pdf</originalFilename><uploaded>2024-04-18T15:13:29.7570830</uploaded><type>Output</type><contentLength>1871027</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2024-04-18T15:46:11.3375594 v2 65837 2024-03-14 Predicting financial distress using multimodal data: An attentive and regularized deep learning method 4ed8c020eae0c9bec4f5d9495d86d415 0000-0002-4688-0619 Mohammad Abedin Mohammad Abedin true false 2024-03-14 CBAE Journal Article Information Processing and Management 61 4 103703 Elsevier BV 0306-4573 Financial distress prediction; Multimodal data; Deep learning; Attention mechanism; Conditional entropy 1 7 2024 2024-07-01 10.1016/j.ipm.2024.103703 COLLEGE NANME Management School COLLEGE CODE CBAE Swansea University This work was supported by the National Natural Science Foundation of China (grants 72271073 and 72101073), and the University Synergy Innovation Program of Anhui Province (grant GXXT-2023-063). 2024-04-18T15:46:11.3375594 2024-03-14T08:46:14.2730113 Faculty of Humanities and Social Sciences School of Management - Accounting and Finance Wanliu Che 1 Zhao Wang 0000-0002-3352-3655 2 Cuiqing Jiang 0000-0001-6492-4550 3 Mohammad Abedin 0000-0002-4688-0619 4 65837__30061__5e424b2f4f7b4de89408bbef9d89ae8b.pdf 65837_AAM.pdf 2024-04-18T15:13:29.7570830 Output 1871027 application/pdf Accepted Manuscript true Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention). true eng https://creativecommons.org/licenses/by/4.0/
title Predicting financial distress using multimodal data: An attentive and regularized deep learning method
spellingShingle Predicting financial distress using multimodal data: An attentive and regularized deep learning method
Mohammad Abedin
title_short Predicting financial distress using multimodal data: An attentive and regularized deep learning method
title_full Predicting financial distress using multimodal data: An attentive and regularized deep learning method
title_fullStr Predicting financial distress using multimodal data: An attentive and regularized deep learning method
title_full_unstemmed Predicting financial distress using multimodal data: An attentive and regularized deep learning method
title_sort Predicting financial distress using multimodal data: An attentive and regularized deep learning method
author_id_str_mv 4ed8c020eae0c9bec4f5d9495d86d415
author_id_fullname_str_mv 4ed8c020eae0c9bec4f5d9495d86d415_***_Mohammad Abedin
author Mohammad Abedin
author2 Wanliu Che
Zhao Wang
Cuiqing Jiang
Mohammad Abedin
format Journal article
container_title Information Processing and Management
container_volume 61
container_issue 4
container_start_page 103703
publishDate 2024
institution Swansea University
issn 0306-4573
doi_str_mv 10.1016/j.ipm.2024.103703
publisher Elsevier BV
college_str Faculty of Humanities and Social Sciences
hierarchytype
hierarchy_top_id facultyofhumanitiesandsocialsciences
hierarchy_top_title Faculty of Humanities and Social Sciences
hierarchy_parent_id facultyofhumanitiesandsocialsciences
hierarchy_parent_title Faculty of Humanities and Social Sciences
department_str School of Management - Accounting and Finance{{{_:::_}}}Faculty of Humanities and Social Sciences{{{_:::_}}}School of Management - Accounting and Finance
document_store_str 1
active_str 0
published_date 2024-07-01T08:33:06Z
_version_ 1821937276673851392
score 11.048085