Journal article 240 views
Oil-Net: A Learning-Based Framework for Working Conditions Diagnosis of Oil Well Through Dynamometer Cards Identification
IEEE Sensors Journal, Volume: 23, Issue: 13, Pages: 14406 - 14417
Swansea University Author: Cheng Cheng
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1109/jsen.2023.3275933
Abstract
Oil-Net: A Learning-Based Framework for Working Conditions Diagnosis of Oil Well Through Dynamometer Cards Identification
Published in: | IEEE Sensors Journal |
---|---|
ISSN: | 1530-437X 1558-1748 |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2023
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa65946 |
first_indexed |
2024-05-29T14:30:23Z |
---|---|
last_indexed |
2024-11-25T14:17:10Z |
id |
cronfa65946 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-05-29T15:30:48.7047932</datestamp><bib-version>v2</bib-version><id>65946</id><entry>2024-04-03</entry><title>Oil-Net: A Learning-Based Framework for Working Conditions Diagnosis of Oil Well Through Dynamometer Cards Identification</title><swanseaauthors><author><sid>11ddf61c123b99e59b00fa1479367582</sid><ORCID>0000-0003-0371-9646</ORCID><firstname>Cheng</firstname><surname>Cheng</surname><name>Cheng Cheng</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-04-03</date><deptcode>MACS</deptcode><abstract/><type>Journal Article</type><journal>IEEE Sensors Journal</journal><volume>23</volume><journalNumber>13</journalNumber><paginationStart>14406</paginationStart><paginationEnd>14417</paginationEnd><publisher>Institute of Electrical and Electronics Engineers (IEEE)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1530-437X</issnPrint><issnElectronic>1558-1748</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-07-01</publishedDate><doi>10.1109/jsen.2023.3275933</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2024-05-29T15:30:48.7047932</lastEdited><Created>2024-04-03T17:26:14.5902794</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Rong</firstname><surname>Ma</surname><order>1</order></author><author><firstname>Haifeng</firstname><surname>Tian</surname><order>2</order></author><author><firstname>Cheng</firstname><surname>Cheng</surname><orcid>0000-0003-0371-9646</orcid><order>3</order></author><author><firstname>Yi</firstname><surname>Xiao</surname><order>4</order></author><author><firstname>Qingxiao</firstname><surname>Xu</surname><order>5</order></author><author><firstname>Xianchuan</firstname><surname>Yu</surname><orcid>0000-0002-1425-0751</orcid><order>6</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2024-05-29T15:30:48.7047932 v2 65946 2024-04-03 Oil-Net: A Learning-Based Framework for Working Conditions Diagnosis of Oil Well Through Dynamometer Cards Identification 11ddf61c123b99e59b00fa1479367582 0000-0003-0371-9646 Cheng Cheng Cheng Cheng true false 2024-04-03 MACS Journal Article IEEE Sensors Journal 23 13 14406 14417 Institute of Electrical and Electronics Engineers (IEEE) 1530-437X 1558-1748 1 7 2023 2023-07-01 10.1109/jsen.2023.3275933 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2024-05-29T15:30:48.7047932 2024-04-03T17:26:14.5902794 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Rong Ma 1 Haifeng Tian 2 Cheng Cheng 0000-0003-0371-9646 3 Yi Xiao 4 Qingxiao Xu 5 Xianchuan Yu 0000-0002-1425-0751 6 |
title |
Oil-Net: A Learning-Based Framework for Working Conditions Diagnosis of Oil Well Through Dynamometer Cards Identification |
spellingShingle |
Oil-Net: A Learning-Based Framework for Working Conditions Diagnosis of Oil Well Through Dynamometer Cards Identification Cheng Cheng |
title_short |
Oil-Net: A Learning-Based Framework for Working Conditions Diagnosis of Oil Well Through Dynamometer Cards Identification |
title_full |
Oil-Net: A Learning-Based Framework for Working Conditions Diagnosis of Oil Well Through Dynamometer Cards Identification |
title_fullStr |
Oil-Net: A Learning-Based Framework for Working Conditions Diagnosis of Oil Well Through Dynamometer Cards Identification |
title_full_unstemmed |
Oil-Net: A Learning-Based Framework for Working Conditions Diagnosis of Oil Well Through Dynamometer Cards Identification |
title_sort |
Oil-Net: A Learning-Based Framework for Working Conditions Diagnosis of Oil Well Through Dynamometer Cards Identification |
author_id_str_mv |
11ddf61c123b99e59b00fa1479367582 |
author_id_fullname_str_mv |
11ddf61c123b99e59b00fa1479367582_***_Cheng Cheng |
author |
Cheng Cheng |
author2 |
Rong Ma Haifeng Tian Cheng Cheng Yi Xiao Qingxiao Xu Xianchuan Yu |
format |
Journal article |
container_title |
IEEE Sensors Journal |
container_volume |
23 |
container_issue |
13 |
container_start_page |
14406 |
publishDate |
2023 |
institution |
Swansea University |
issn |
1530-437X 1558-1748 |
doi_str_mv |
10.1109/jsen.2023.3275933 |
publisher |
Institute of Electrical and Electronics Engineers (IEEE) |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
0 |
active_str |
0 |
published_date |
2023-07-01T05:45:42Z |
_version_ |
1822017341657972736 |
score |
11.293348 |