Journal article 182 views 23 downloads
Microencapsulated Bio-Based Rejuvenators for the Self-Healing of Bituminous Materials
Materials, Volume: 13, Issue: 6, Start page: 1446
Swansea University Author: Jose Norambuena-Contreras
-
PDF | Version of Record
© 2020 by the authors. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Download (6.14MB)
DOI (Published version): 10.3390/ma13061446
Abstract
Asphalt self-healing by encapsulated rejuvenating agents is considered a revolutionary technology for the autonomic crack-healing of aged asphalt pavements. This paper aims to explore the use of Bio-Oil (BO) obtained from liquefied agricultural biomass waste as a bio-based encapsulated rejuvenating...
Published in: | Materials |
---|---|
ISSN: | 1996-1944 |
Published: |
MDPI AG
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa66779 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2024-06-20T10:03:04Z |
---|---|
last_indexed |
2024-06-20T10:03:04Z |
id |
cronfa66779 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>66779</id><entry>2024-06-20</entry><title>Microencapsulated Bio-Based Rejuvenators for the Self-Healing of Bituminous Materials</title><swanseaauthors><author><sid>73c6854ebb10465fbf7faab297135641</sid><ORCID>0000-0001-8327-2236</ORCID><firstname>Jose</firstname><surname>Norambuena-Contreras</surname><name>Jose Norambuena-Contreras</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-06-20</date><deptcode>ACEM</deptcode><abstract>Asphalt self-healing by encapsulated rejuvenating agents is considered a revolutionary technology for the autonomic crack-healing of aged asphalt pavements. This paper aims to explore the use of Bio-Oil (BO) obtained from liquefied agricultural biomass waste as a bio-based encapsulated rejuvenating agent for self-healing of bituminous materials. Novel BO capsules were synthesized using two simple dripping methods through dropping funnel and syringe pump devices, where the BO agent was microencapsulated by external ionic gelation in a biopolymer matrix of sodium alginate. Size, surface aspect, and elemental composition of the BO capsules were characterized by optical and scanning electron microscopy and energy-dispersive X-ray spectroscopy. Thermal stability and chemical properties of BO capsules and their components were assessed through thermogravimetric analysis (TGA-DTG) and Fourier-Transform Infrared spectroscopy (FTIR-ATR). The mechanical behavior of the capsules was evaluated by compressive and low-load micro-indentation tests. The self-healing efficiency over time of BO as a rejuvenating agent in cracked bitumen samples was quantified by fluorescence microscopy. Main results showed that the BO capsules presented an adequate morphology for the asphalt self-healing application, with good thermal stability and physical-chemical properties. It was also proven that the BO can diffuse in the bitumen reducing the viscosity and consequently self-healing the open microcracks.</abstract><type>Journal Article</type><journal>Materials</journal><volume>13</volume><journalNumber>6</journalNumber><paginationStart>1446</paginationStart><paginationEnd/><publisher>MDPI AG</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>1996-1944</issnElectronic><keywords>asphalt; encapsulated rejuvenators; agricultural waste; bio-oil; self-healing efficiency</keywords><publishedDay>22</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-03-22</publishedDate><doi>10.3390/ma13061446</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>This research was funded by the National Commission for Scientific & Technological Research (CONICYT) from the Government of Chile, through the Research Project FONDECYT Regular 2019 No. 1190027.</funders><projectreference/><lastEdited>2024-07-26T12:10:27.5660208</lastEdited><Created>2024-06-20T11:01:19.4747042</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Aerospace Engineering</level></path><authors><author><firstname>Jose</firstname><surname>Norambuena-Contreras</surname><orcid>0000-0001-8327-2236</orcid><order>1</order></author><author><firstname>Luis E.</firstname><surname>Arteaga-Perez</surname><orcid>0000-0003-3982-4165</orcid><order>2</order></author><author><firstname>Andrea Y.</firstname><surname>Guadarrama-Lezama</surname><order>3</order></author><author><firstname>Rodrigo</firstname><surname>Briones</surname><order>4</order></author><author><firstname>Juan F.</firstname><surname>Vivanco</surname><order>5</order></author><author><firstname>Irene</firstname><surname>Gonzalez-Torre</surname><order>6</order></author></authors><documents><document><filename>66779__30996__6aff32057bbc4e2f8fa3b5ecf2dafd61.pdf</filename><originalFilename>66779.VoR.pdf</originalFilename><uploaded>2024-07-26T12:08:34.0094884</uploaded><type>Output</type><contentLength>6441250</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2020 by the authors. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
v2 66779 2024-06-20 Microencapsulated Bio-Based Rejuvenators for the Self-Healing of Bituminous Materials 73c6854ebb10465fbf7faab297135641 0000-0001-8327-2236 Jose Norambuena-Contreras Jose Norambuena-Contreras true false 2024-06-20 ACEM Asphalt self-healing by encapsulated rejuvenating agents is considered a revolutionary technology for the autonomic crack-healing of aged asphalt pavements. This paper aims to explore the use of Bio-Oil (BO) obtained from liquefied agricultural biomass waste as a bio-based encapsulated rejuvenating agent for self-healing of bituminous materials. Novel BO capsules were synthesized using two simple dripping methods through dropping funnel and syringe pump devices, where the BO agent was microencapsulated by external ionic gelation in a biopolymer matrix of sodium alginate. Size, surface aspect, and elemental composition of the BO capsules were characterized by optical and scanning electron microscopy and energy-dispersive X-ray spectroscopy. Thermal stability and chemical properties of BO capsules and their components were assessed through thermogravimetric analysis (TGA-DTG) and Fourier-Transform Infrared spectroscopy (FTIR-ATR). The mechanical behavior of the capsules was evaluated by compressive and low-load micro-indentation tests. The self-healing efficiency over time of BO as a rejuvenating agent in cracked bitumen samples was quantified by fluorescence microscopy. Main results showed that the BO capsules presented an adequate morphology for the asphalt self-healing application, with good thermal stability and physical-chemical properties. It was also proven that the BO can diffuse in the bitumen reducing the viscosity and consequently self-healing the open microcracks. Journal Article Materials 13 6 1446 MDPI AG 1996-1944 asphalt; encapsulated rejuvenators; agricultural waste; bio-oil; self-healing efficiency 22 3 2020 2020-03-22 10.3390/ma13061446 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University Another institution paid the OA fee This research was funded by the National Commission for Scientific & Technological Research (CONICYT) from the Government of Chile, through the Research Project FONDECYT Regular 2019 No. 1190027. 2024-07-26T12:10:27.5660208 2024-06-20T11:01:19.4747042 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Aerospace Engineering Jose Norambuena-Contreras 0000-0001-8327-2236 1 Luis E. Arteaga-Perez 0000-0003-3982-4165 2 Andrea Y. Guadarrama-Lezama 3 Rodrigo Briones 4 Juan F. Vivanco 5 Irene Gonzalez-Torre 6 66779__30996__6aff32057bbc4e2f8fa3b5ecf2dafd61.pdf 66779.VoR.pdf 2024-07-26T12:08:34.0094884 Output 6441250 application/pdf Version of Record true © 2020 by the authors. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Microencapsulated Bio-Based Rejuvenators for the Self-Healing of Bituminous Materials |
spellingShingle |
Microencapsulated Bio-Based Rejuvenators for the Self-Healing of Bituminous Materials Jose Norambuena-Contreras |
title_short |
Microencapsulated Bio-Based Rejuvenators for the Self-Healing of Bituminous Materials |
title_full |
Microencapsulated Bio-Based Rejuvenators for the Self-Healing of Bituminous Materials |
title_fullStr |
Microencapsulated Bio-Based Rejuvenators for the Self-Healing of Bituminous Materials |
title_full_unstemmed |
Microencapsulated Bio-Based Rejuvenators for the Self-Healing of Bituminous Materials |
title_sort |
Microencapsulated Bio-Based Rejuvenators for the Self-Healing of Bituminous Materials |
author_id_str_mv |
73c6854ebb10465fbf7faab297135641 |
author_id_fullname_str_mv |
73c6854ebb10465fbf7faab297135641_***_Jose Norambuena-Contreras |
author |
Jose Norambuena-Contreras |
author2 |
Jose Norambuena-Contreras Luis E. Arteaga-Perez Andrea Y. Guadarrama-Lezama Rodrigo Briones Juan F. Vivanco Irene Gonzalez-Torre |
format |
Journal article |
container_title |
Materials |
container_volume |
13 |
container_issue |
6 |
container_start_page |
1446 |
publishDate |
2020 |
institution |
Swansea University |
issn |
1996-1944 |
doi_str_mv |
10.3390/ma13061446 |
publisher |
MDPI AG |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Aerospace Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Aerospace Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Asphalt self-healing by encapsulated rejuvenating agents is considered a revolutionary technology for the autonomic crack-healing of aged asphalt pavements. This paper aims to explore the use of Bio-Oil (BO) obtained from liquefied agricultural biomass waste as a bio-based encapsulated rejuvenating agent for self-healing of bituminous materials. Novel BO capsules were synthesized using two simple dripping methods through dropping funnel and syringe pump devices, where the BO agent was microencapsulated by external ionic gelation in a biopolymer matrix of sodium alginate. Size, surface aspect, and elemental composition of the BO capsules were characterized by optical and scanning electron microscopy and energy-dispersive X-ray spectroscopy. Thermal stability and chemical properties of BO capsules and their components were assessed through thermogravimetric analysis (TGA-DTG) and Fourier-Transform Infrared spectroscopy (FTIR-ATR). The mechanical behavior of the capsules was evaluated by compressive and low-load micro-indentation tests. The self-healing efficiency over time of BO as a rejuvenating agent in cracked bitumen samples was quantified by fluorescence microscopy. Main results showed that the BO capsules presented an adequate morphology for the asphalt self-healing application, with good thermal stability and physical-chemical properties. It was also proven that the BO can diffuse in the bitumen reducing the viscosity and consequently self-healing the open microcracks. |
published_date |
2020-03-22T12:10:26Z |
_version_ |
1805639721349545984 |
score |
11.035655 |