No Cover Image

Journal article 550 views 68 downloads

Correcting common OCT artifacts enhances plaque classification and identification of higher-risk plaque features

Benn Jessney, Xu Chen, Sophie Gu, Adam Brown, Daniel Obaid Orcid Logo, Charis Costopoulos, Martin Goddard, Nikunj Shah, Hector Garcia-Garcia, Yoshinobu Onuma, Patrick Serruys, Stephen P. Hoole, Michael Mahmoudi, Michael Roberts, Martin Bennett

Cardiovascular Revascularization Medicine, Volume: 73, Pages: 50 - 58

Swansea University Author: Daniel Obaid Orcid Logo

  • 67055.VoR.pdf

    PDF | Version of Record

    © 2024 The Authors. This is an open access article under the CC BY license.

    Download (3.39MB)

Abstract

BackgroundOptical coherence tomography (OCT) is used widely to guide stent placement, identify higher-risk plaques, and assess mechanisms of drug efficacy. However, a range of common artifacts can prevent accurate plaque classification and measurements, and limit usable frames in research studies. W...

Full description

Published in: Cardiovascular Revascularization Medicine
ISSN: 1553-8389
Published: Elsevier BV 2025
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa67055
first_indexed 2024-07-09T14:49:12Z
last_indexed 2025-05-15T10:43:36Z
id cronfa67055
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-05-14T16:33:24.7843261</datestamp><bib-version>v2</bib-version><id>67055</id><entry>2024-07-09</entry><title>Correcting common OCT artifacts enhances plaque classification and identification of higher-risk plaque features</title><swanseaauthors><author><sid>1cb4b49224d4f3f2b546ed0f39e13ea8</sid><ORCID>0000-0002-3891-1403</ORCID><firstname>Daniel</firstname><surname>Obaid</surname><name>Daniel Obaid</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-07-09</date><deptcode>MEDS</deptcode><abstract>BackgroundOptical coherence tomography (OCT) is used widely to guide stent placement, identify higher-risk plaques, and assess mechanisms of drug efficacy. However, a range of common artifacts can prevent accurate plaque classification and measurements, and limit usable frames in research studies. We determined whether pre-processing OCT images corrects artifacts and improves plaque classification.MethodsWe examined both ex-vivo and clinical trial OCT pullbacks for artifacts that prevented accurate tissue identification and/or plaque measurements. We developed Fourier transform-based software that reconstructed images free of common OCT artifacts, and compared corrected and uncorrected images.Results48 % of OCT frames contained image artifacts, with 62 % of artifacts over or within lesions, preventing accurate measurement in 12 % frames. Pre-processing corrected &gt;70 % of all artifacts, including thrombus, macrophage shadows, inadequate flushing, and gas bubbles. True tissue reconstruction was achieved in 63 % frames that would otherwise prevent accurate clinical measurements. Artifact correction was non-destructive and retained anatomical lumen and plaque parameters. Correction improved accuracy of plaque classification compared against histology and retained accurate assessment of higher-risk features. Correction also changed plaque classification and prevented artifact-related measurement errors in a clinical study, and reduced unmeasurable frames to &lt;5 % ex-vivo and ~1 % in-vivo.ConclusionsFourier transform-based pre-processing corrects a wide range of common OCT artifacts, improving identification of higher-risk features and plaque classification, and allowing more of the whole dataset to be used for clinical decision-making and in research. Pre-processing can augment OCT image analysis systems both for stent optimization and in natural history or drug studies.</abstract><type>Journal Article</type><journal>Cardiovascular Revascularization Medicine</journal><volume>73</volume><journalNumber/><paginationStart>50</paginationStart><paginationEnd>58</paginationEnd><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1553-8389</issnPrint><issnElectronic/><keywords>Atherosclerosis; Fibroatheroma; Optical coherence tomography; Artifact</keywords><publishedDay>1</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-04-01</publishedDate><doi>10.1016/j.carrev.2024.06.023</doi><url/><notes/><college>COLLEGE NANME</college><department>Medical School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDS</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>This work was supported by British Heart Foundation Grants FS/19/66/34658, RG71070, RG84554, BHF Cambridge Centre for Research Excellence, EPSRC Cambridge Maths in Healthcare Centre Nr. EP/N014588/1, and Cambridge NIHR Biomedical Research Centre.</funders><projectreference/><lastEdited>2025-05-14T16:33:24.7843261</lastEdited><Created>2024-07-09T15:45:34.2312936</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Biomedical Science</level></path><authors><author><firstname>Benn</firstname><surname>Jessney</surname><order>1</order></author><author><firstname>Xu</firstname><surname>Chen</surname><order>2</order></author><author><firstname>Sophie</firstname><surname>Gu</surname><order>3</order></author><author><firstname>Adam</firstname><surname>Brown</surname><order>4</order></author><author><firstname>Daniel</firstname><surname>Obaid</surname><orcid>0000-0002-3891-1403</orcid><order>5</order></author><author><firstname>Charis</firstname><surname>Costopoulos</surname><order>6</order></author><author><firstname>Martin</firstname><surname>Goddard</surname><order>7</order></author><author><firstname>Nikunj</firstname><surname>Shah</surname><order>8</order></author><author><firstname>Hector</firstname><surname>Garcia-Garcia</surname><order>9</order></author><author><firstname>Yoshinobu</firstname><surname>Onuma</surname><order>10</order></author><author><firstname>Patrick</firstname><surname>Serruys</surname><order>11</order></author><author><firstname>Stephen P.</firstname><surname>Hoole</surname><order>12</order></author><author><firstname>Michael</firstname><surname>Mahmoudi</surname><order>13</order></author><author><firstname>Michael</firstname><surname>Roberts</surname><order>14</order></author><author><firstname>Martin</firstname><surname>Bennett</surname><order>15</order></author></authors><documents><document><filename>67055__34277__ca36993c045b4612a5ea1c095bb22518.pdf</filename><originalFilename>67055.VoR.pdf</originalFilename><uploaded>2025-05-14T16:30:24.8166744</uploaded><type>Output</type><contentLength>3555966</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; 2024 The Authors. This is an open access article under the CC BY license.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2025-05-14T16:33:24.7843261 v2 67055 2024-07-09 Correcting common OCT artifacts enhances plaque classification and identification of higher-risk plaque features 1cb4b49224d4f3f2b546ed0f39e13ea8 0000-0002-3891-1403 Daniel Obaid Daniel Obaid true false 2024-07-09 MEDS BackgroundOptical coherence tomography (OCT) is used widely to guide stent placement, identify higher-risk plaques, and assess mechanisms of drug efficacy. However, a range of common artifacts can prevent accurate plaque classification and measurements, and limit usable frames in research studies. We determined whether pre-processing OCT images corrects artifacts and improves plaque classification.MethodsWe examined both ex-vivo and clinical trial OCT pullbacks for artifacts that prevented accurate tissue identification and/or plaque measurements. We developed Fourier transform-based software that reconstructed images free of common OCT artifacts, and compared corrected and uncorrected images.Results48 % of OCT frames contained image artifacts, with 62 % of artifacts over or within lesions, preventing accurate measurement in 12 % frames. Pre-processing corrected >70 % of all artifacts, including thrombus, macrophage shadows, inadequate flushing, and gas bubbles. True tissue reconstruction was achieved in 63 % frames that would otherwise prevent accurate clinical measurements. Artifact correction was non-destructive and retained anatomical lumen and plaque parameters. Correction improved accuracy of plaque classification compared against histology and retained accurate assessment of higher-risk features. Correction also changed plaque classification and prevented artifact-related measurement errors in a clinical study, and reduced unmeasurable frames to <5 % ex-vivo and ~1 % in-vivo.ConclusionsFourier transform-based pre-processing corrects a wide range of common OCT artifacts, improving identification of higher-risk features and plaque classification, and allowing more of the whole dataset to be used for clinical decision-making and in research. Pre-processing can augment OCT image analysis systems both for stent optimization and in natural history or drug studies. Journal Article Cardiovascular Revascularization Medicine 73 50 58 Elsevier BV 1553-8389 Atherosclerosis; Fibroatheroma; Optical coherence tomography; Artifact 1 4 2025 2025-04-01 10.1016/j.carrev.2024.06.023 COLLEGE NANME Medical School COLLEGE CODE MEDS Swansea University Another institution paid the OA fee This work was supported by British Heart Foundation Grants FS/19/66/34658, RG71070, RG84554, BHF Cambridge Centre for Research Excellence, EPSRC Cambridge Maths in Healthcare Centre Nr. EP/N014588/1, and Cambridge NIHR Biomedical Research Centre. 2025-05-14T16:33:24.7843261 2024-07-09T15:45:34.2312936 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Biomedical Science Benn Jessney 1 Xu Chen 2 Sophie Gu 3 Adam Brown 4 Daniel Obaid 0000-0002-3891-1403 5 Charis Costopoulos 6 Martin Goddard 7 Nikunj Shah 8 Hector Garcia-Garcia 9 Yoshinobu Onuma 10 Patrick Serruys 11 Stephen P. Hoole 12 Michael Mahmoudi 13 Michael Roberts 14 Martin Bennett 15 67055__34277__ca36993c045b4612a5ea1c095bb22518.pdf 67055.VoR.pdf 2025-05-14T16:30:24.8166744 Output 3555966 application/pdf Version of Record true © 2024 The Authors. This is an open access article under the CC BY license. true eng http://creativecommons.org/licenses/by/4.0/
title Correcting common OCT artifacts enhances plaque classification and identification of higher-risk plaque features
spellingShingle Correcting common OCT artifacts enhances plaque classification and identification of higher-risk plaque features
Daniel Obaid
title_short Correcting common OCT artifacts enhances plaque classification and identification of higher-risk plaque features
title_full Correcting common OCT artifacts enhances plaque classification and identification of higher-risk plaque features
title_fullStr Correcting common OCT artifacts enhances plaque classification and identification of higher-risk plaque features
title_full_unstemmed Correcting common OCT artifacts enhances plaque classification and identification of higher-risk plaque features
title_sort Correcting common OCT artifacts enhances plaque classification and identification of higher-risk plaque features
author_id_str_mv 1cb4b49224d4f3f2b546ed0f39e13ea8
author_id_fullname_str_mv 1cb4b49224d4f3f2b546ed0f39e13ea8_***_Daniel Obaid
author Daniel Obaid
author2 Benn Jessney
Xu Chen
Sophie Gu
Adam Brown
Daniel Obaid
Charis Costopoulos
Martin Goddard
Nikunj Shah
Hector Garcia-Garcia
Yoshinobu Onuma
Patrick Serruys
Stephen P. Hoole
Michael Mahmoudi
Michael Roberts
Martin Bennett
format Journal article
container_title Cardiovascular Revascularization Medicine
container_volume 73
container_start_page 50
publishDate 2025
institution Swansea University
issn 1553-8389
doi_str_mv 10.1016/j.carrev.2024.06.023
publisher Elsevier BV
college_str Faculty of Medicine, Health and Life Sciences
hierarchytype
hierarchy_top_id facultyofmedicinehealthandlifesciences
hierarchy_top_title Faculty of Medicine, Health and Life Sciences
hierarchy_parent_id facultyofmedicinehealthandlifesciences
hierarchy_parent_title Faculty of Medicine, Health and Life Sciences
department_str Swansea University Medical School - Biomedical Science{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Biomedical Science
document_store_str 1
active_str 0
description BackgroundOptical coherence tomography (OCT) is used widely to guide stent placement, identify higher-risk plaques, and assess mechanisms of drug efficacy. However, a range of common artifacts can prevent accurate plaque classification and measurements, and limit usable frames in research studies. We determined whether pre-processing OCT images corrects artifacts and improves plaque classification.MethodsWe examined both ex-vivo and clinical trial OCT pullbacks for artifacts that prevented accurate tissue identification and/or plaque measurements. We developed Fourier transform-based software that reconstructed images free of common OCT artifacts, and compared corrected and uncorrected images.Results48 % of OCT frames contained image artifacts, with 62 % of artifacts over or within lesions, preventing accurate measurement in 12 % frames. Pre-processing corrected >70 % of all artifacts, including thrombus, macrophage shadows, inadequate flushing, and gas bubbles. True tissue reconstruction was achieved in 63 % frames that would otherwise prevent accurate clinical measurements. Artifact correction was non-destructive and retained anatomical lumen and plaque parameters. Correction improved accuracy of plaque classification compared against histology and retained accurate assessment of higher-risk features. Correction also changed plaque classification and prevented artifact-related measurement errors in a clinical study, and reduced unmeasurable frames to <5 % ex-vivo and ~1 % in-vivo.ConclusionsFourier transform-based pre-processing corrects a wide range of common OCT artifacts, improving identification of higher-risk features and plaque classification, and allowing more of the whole dataset to be used for clinical decision-making and in research. Pre-processing can augment OCT image analysis systems both for stent optimization and in natural history or drug studies.
published_date 2025-04-01T17:31:38Z
_version_ 1850690396177301504
score 11.08899