No Cover Image

Journal article 7 views

Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction

En Wang Orcid Logo, Mijia Zhang Orcid Logo, Cheng Cheng Orcid Logo, Yongjian Yang Orcid Logo, Wenbin Liu Orcid Logo, Huaizhi Yu Orcid Logo, Liang Wang Orcid Logo, Jian Zhang

IEEE Transactions on Industrial Informatics, Volume: 17, Issue: 9, Pages: 6170 - 6181

Swansea University Author: Cheng Cheng Orcid Logo

Full text not available from this repository: check for access using links below.

Published in: IEEE Transactions on Industrial Informatics
ISSN: 1551-3203 1941-0050
Published: Institute of Electrical and Electronics Engineers (IEEE) 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa67679
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2024-10-24T13:44:29Z
last_indexed 2024-10-24T13:44:29Z
id cronfa67679
recordtype SURis
fullrecord <?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>67679</id><entry>2024-09-12</entry><title>Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction</title><swanseaauthors><author><sid>11ddf61c123b99e59b00fa1479367582</sid><ORCID>0000-0003-0371-9646</ORCID><firstname>Cheng</firstname><surname>Cheng</surname><name>Cheng Cheng</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-09-12</date><deptcode>MACS</deptcode><abstract/><type>Journal Article</type><journal>IEEE Transactions on Industrial Informatics</journal><volume>17</volume><journalNumber>9</journalNumber><paginationStart>6170</paginationStart><paginationEnd>6181</paginationEnd><publisher>Institute of Electrical and Electronics Engineers (IEEE)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1551-3203</issnPrint><issnElectronic>1941-0050</issnElectronic><keywords/><publishedDay>16</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-06-16</publishedDate><doi>10.1109/tii.2020.3028616</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>This work was supported in part by the National Natural Science Foundations of China under Grant 61772230 and Grant 61972450, in part by the National Natural Science Foundations of China for Young Scholars under Grant 61702215, in part by the Natural Science Foundations of Jilin Province under Grant 20190201022JC, in part by the National Science Key Lab Fund Project under Grant 61421010418, in part by the Innovation Capacity Building Project of Jilin Province Development and Reform Commission under Grant 2020C017-2, and in part by the Changchun Science and Technology Development Project under Grant 18DY005. Paper no. TII-20-2138. (Corresponding author: Wenbin Liu.)</funders><projectreference/><lastEdited>2024-10-24T14:45:18.2657708</lastEdited><Created>2024-09-12T15:34:41.4596900</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>En</firstname><surname>Wang</surname><orcid>0000-0001-6112-2923</orcid><order>1</order></author><author><firstname>Mijia</firstname><surname>Zhang</surname><orcid>0000-0002-6251-3843</orcid><order>2</order></author><author><firstname>Cheng</firstname><surname>Cheng</surname><orcid>0000-0003-0371-9646</orcid><order>3</order></author><author><firstname>Yongjian</firstname><surname>Yang</surname><orcid>0000-0002-0056-3626</orcid><order>4</order></author><author><firstname>Wenbin</firstname><surname>Liu</surname><orcid>0000-0002-4384-1446</orcid><order>5</order></author><author><firstname>Huaizhi</firstname><surname>Yu</surname><orcid>0000-0001-5922-6571</orcid><order>6</order></author><author><firstname>Liang</firstname><surname>Wang</surname><orcid>0000-0002-5897-4401</orcid><order>7</order></author><author><firstname>Jian</firstname><surname>Zhang</surname><order>8</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling v2 67679 2024-09-12 Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction 11ddf61c123b99e59b00fa1479367582 0000-0003-0371-9646 Cheng Cheng Cheng Cheng true false 2024-09-12 MACS Journal Article IEEE Transactions on Industrial Informatics 17 9 6170 6181 Institute of Electrical and Electronics Engineers (IEEE) 1551-3203 1941-0050 16 6 2021 2021-06-16 10.1109/tii.2020.3028616 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University This work was supported in part by the National Natural Science Foundations of China under Grant 61772230 and Grant 61972450, in part by the National Natural Science Foundations of China for Young Scholars under Grant 61702215, in part by the Natural Science Foundations of Jilin Province under Grant 20190201022JC, in part by the National Science Key Lab Fund Project under Grant 61421010418, in part by the Innovation Capacity Building Project of Jilin Province Development and Reform Commission under Grant 2020C017-2, and in part by the Changchun Science and Technology Development Project under Grant 18DY005. Paper no. TII-20-2138. (Corresponding author: Wenbin Liu.) 2024-10-24T14:45:18.2657708 2024-09-12T15:34:41.4596900 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science En Wang 0000-0001-6112-2923 1 Mijia Zhang 0000-0002-6251-3843 2 Cheng Cheng 0000-0003-0371-9646 3 Yongjian Yang 0000-0002-0056-3626 4 Wenbin Liu 0000-0002-4384-1446 5 Huaizhi Yu 0000-0001-5922-6571 6 Liang Wang 0000-0002-5897-4401 7 Jian Zhang 8
title Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction
spellingShingle Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction
Cheng Cheng
title_short Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction
title_full Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction
title_fullStr Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction
title_full_unstemmed Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction
title_sort Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction
author_id_str_mv 11ddf61c123b99e59b00fa1479367582
author_id_fullname_str_mv 11ddf61c123b99e59b00fa1479367582_***_Cheng Cheng
author Cheng Cheng
author2 En Wang
Mijia Zhang
Cheng Cheng
Yongjian Yang
Wenbin Liu
Huaizhi Yu
Liang Wang
Jian Zhang
format Journal article
container_title IEEE Transactions on Industrial Informatics
container_volume 17
container_issue 9
container_start_page 6170
publishDate 2021
institution Swansea University
issn 1551-3203
1941-0050
doi_str_mv 10.1109/tii.2020.3028616
publisher Institute of Electrical and Electronics Engineers (IEEE)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
document_store_str 0
active_str 0
published_date 2021-06-16T14:45:16Z
_version_ 1813803189110046720
score 11.035786