Journal article 7 views
Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction
En Wang ,
Mijia Zhang ,
Cheng Cheng ,
Yongjian Yang ,
Wenbin Liu ,
Huaizhi Yu ,
Liang Wang ,
Jian Zhang
IEEE Transactions on Industrial Informatics, Volume: 17, Issue: 9, Pages: 6170 - 6181
Swansea University Author: Cheng Cheng
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1109/tii.2020.3028616
Abstract
Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction
Published in: | IEEE Transactions on Industrial Informatics |
---|---|
ISSN: | 1551-3203 1941-0050 |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa67679 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2024-10-24T13:44:29Z |
---|---|
last_indexed |
2024-10-24T13:44:29Z |
id |
cronfa67679 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>67679</id><entry>2024-09-12</entry><title>Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction</title><swanseaauthors><author><sid>11ddf61c123b99e59b00fa1479367582</sid><ORCID>0000-0003-0371-9646</ORCID><firstname>Cheng</firstname><surname>Cheng</surname><name>Cheng Cheng</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-09-12</date><deptcode>MACS</deptcode><abstract/><type>Journal Article</type><journal>IEEE Transactions on Industrial Informatics</journal><volume>17</volume><journalNumber>9</journalNumber><paginationStart>6170</paginationStart><paginationEnd>6181</paginationEnd><publisher>Institute of Electrical and Electronics Engineers (IEEE)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1551-3203</issnPrint><issnElectronic>1941-0050</issnElectronic><keywords/><publishedDay>16</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-06-16</publishedDate><doi>10.1109/tii.2020.3028616</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>This work was
supported in part by the National Natural Science Foundations of China
under Grant 61772230 and Grant 61972450, in part by the National
Natural Science Foundations of China for Young Scholars under Grant
61702215, in part by the Natural Science Foundations of Jilin Province
under Grant 20190201022JC, in part by the National Science Key
Lab Fund Project under Grant 61421010418, in part by the Innovation
Capacity Building Project of Jilin Province Development and Reform
Commission under Grant 2020C017-2, and in part by the Changchun
Science and Technology Development Project under Grant 18DY005.
Paper no. TII-20-2138. (Corresponding author: Wenbin Liu.)</funders><projectreference/><lastEdited>2024-10-24T14:45:18.2657708</lastEdited><Created>2024-09-12T15:34:41.4596900</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>En</firstname><surname>Wang</surname><orcid>0000-0001-6112-2923</orcid><order>1</order></author><author><firstname>Mijia</firstname><surname>Zhang</surname><orcid>0000-0002-6251-3843</orcid><order>2</order></author><author><firstname>Cheng</firstname><surname>Cheng</surname><orcid>0000-0003-0371-9646</orcid><order>3</order></author><author><firstname>Yongjian</firstname><surname>Yang</surname><orcid>0000-0002-0056-3626</orcid><order>4</order></author><author><firstname>Wenbin</firstname><surname>Liu</surname><orcid>0000-0002-4384-1446</orcid><order>5</order></author><author><firstname>Huaizhi</firstname><surname>Yu</surname><orcid>0000-0001-5922-6571</orcid><order>6</order></author><author><firstname>Liang</firstname><surname>Wang</surname><orcid>0000-0002-5897-4401</orcid><order>7</order></author><author><firstname>Jian</firstname><surname>Zhang</surname><order>8</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
v2 67679 2024-09-12 Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction 11ddf61c123b99e59b00fa1479367582 0000-0003-0371-9646 Cheng Cheng Cheng Cheng true false 2024-09-12 MACS Journal Article IEEE Transactions on Industrial Informatics 17 9 6170 6181 Institute of Electrical and Electronics Engineers (IEEE) 1551-3203 1941-0050 16 6 2021 2021-06-16 10.1109/tii.2020.3028616 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University This work was supported in part by the National Natural Science Foundations of China under Grant 61772230 and Grant 61972450, in part by the National Natural Science Foundations of China for Young Scholars under Grant 61702215, in part by the Natural Science Foundations of Jilin Province under Grant 20190201022JC, in part by the National Science Key Lab Fund Project under Grant 61421010418, in part by the Innovation Capacity Building Project of Jilin Province Development and Reform Commission under Grant 2020C017-2, and in part by the Changchun Science and Technology Development Project under Grant 18DY005. Paper no. TII-20-2138. (Corresponding author: Wenbin Liu.) 2024-10-24T14:45:18.2657708 2024-09-12T15:34:41.4596900 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science En Wang 0000-0001-6112-2923 1 Mijia Zhang 0000-0002-6251-3843 2 Cheng Cheng 0000-0003-0371-9646 3 Yongjian Yang 0000-0002-0056-3626 4 Wenbin Liu 0000-0002-4384-1446 5 Huaizhi Yu 0000-0001-5922-6571 6 Liang Wang 0000-0002-5897-4401 7 Jian Zhang 8 |
title |
Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction |
spellingShingle |
Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction Cheng Cheng |
title_short |
Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction |
title_full |
Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction |
title_fullStr |
Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction |
title_full_unstemmed |
Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction |
title_sort |
Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction |
author_id_str_mv |
11ddf61c123b99e59b00fa1479367582 |
author_id_fullname_str_mv |
11ddf61c123b99e59b00fa1479367582_***_Cheng Cheng |
author |
Cheng Cheng |
author2 |
En Wang Mijia Zhang Cheng Cheng Yongjian Yang Wenbin Liu Huaizhi Yu Liang Wang Jian Zhang |
format |
Journal article |
container_title |
IEEE Transactions on Industrial Informatics |
container_volume |
17 |
container_issue |
9 |
container_start_page |
6170 |
publishDate |
2021 |
institution |
Swansea University |
issn |
1551-3203 1941-0050 |
doi_str_mv |
10.1109/tii.2020.3028616 |
publisher |
Institute of Electrical and Electronics Engineers (IEEE) |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
0 |
active_str |
0 |
published_date |
2021-06-16T14:45:16Z |
_version_ |
1813803189110046720 |
score |
11.035786 |