No Cover Image

Journal article 18 views

Volatile odours reflect breeding status but not social group membership in captive Damaraland mole-rats

Hazel Nichols Orcid Logo

Animal Behaviour

Swansea University Author: Hazel Nichols Orcid Logo

Abstract

In mammals, olfaction plays a key role in social behaviour, for example in identifying mating opportunities and potential rivals. However, we still have a limited understanding of how social information is encoded in animal odours, including the social determinants of chemical similarity and diversi...

Full description

Published in: Animal Behaviour
Published: Science Direct
URI: https://cronfa.swan.ac.uk/Record/cronfa67713
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: In mammals, olfaction plays a key role in social behaviour, for example in identifying mating opportunities and potential rivals. However, we still have a limited understanding of how social information is encoded in animal odours, including the social determinants of chemical similarity and diversity. Here, we used gas chromatography to analyse the chemical composition of swabs taken from the facial and anogenital regions of Damaraland mole-rats (Fukomys damarensis), a highly social subterranean mammal that relies almost exclusively on olfactory and tactile social cues. We found no sign of individual identity across the two body areas sampled; samples from the facial region and samples of the anogenital region from the same individual were not similar to each other, suggesting that these regions carry different information. However, chemical profiles varied significantly by sex and breeding status; female breeders differed from non-breeders in their anogenital profiles, but had higher chemical diversity in their facial profiles compared to both males and non-breeders. Interestingly, we found no signals of social group identity. Instead, individual identity may be conveyed through signature mixes that are learned through frequent contact, rather than through specific odours associated with genetic kinship or social group membership. Our results highlight the complexity of chemical communication systems in social species, and suggest that signals of group-level identity are not necessary for behavioural responses based on group-membership.
College: Faculty of Science and Engineering
Funders: This work was supported by an Alexander von Humboldt Foundation Research Fellowship (awarded to HJN), a Leverhulme Trust International Fellowship (grant reference: IAF-2018-006; awarded to HJN) and a University of Pretoria Staff Exchange Bursary (awarded to HJN and NCB).