No Cover Image

Journal article 26 views

Adiabatic expansion cooling of antihydrogen

Niels Madsen Orcid Logo, Stefan Eriksson Orcid Logo, Michael Charlton, Christopher Baker Orcid Logo, Aled Isaac Orcid Logo, Dirk van der Werf Orcid Logo, Daniel Maxwell Orcid Logo

PHYSICAL REVIEW RESEARCH, Volume: 6

Swansea University Authors: Niels Madsen Orcid Logo, Stefan Eriksson Orcid Logo, Michael Charlton, Christopher Baker Orcid Logo, Aled Isaac Orcid Logo, Dirk van der Werf Orcid Logo, Daniel Maxwell Orcid Logo

Full text not available from this repository: check for access using links below.

Abstract

Magnetically trapped antihydrogen atoms can be cooled by expanding the volume of the trap in which they are confined. We report a proof-of-principle experiment in which antiatoms are deliberately released from expanded and static traps. Antiatoms escape at an average trap depth of 0.08 ± 0.01 K (sta...

Full description

Published in: PHYSICAL REVIEW RESEARCH
Published: 2024
Online Access: https://doi.org/10.1103/PhysRevResearch.6.L032065
URI: https://cronfa.swan.ac.uk/Record/cronfa67727
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2024-09-19T07:13:49Z
last_indexed 2024-09-19T07:13:49Z
id cronfa67727
recordtype SURis
fullrecord <?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>67727</id><entry>2024-09-19</entry><title>Adiabatic expansion cooling of antihydrogen</title><swanseaauthors><author><sid>e348e4d768ee19c1d0c68ce3a66d6303</sid><ORCID>0000-0002-7372-0784</ORCID><firstname>Niels</firstname><surname>Madsen</surname><name>Niels Madsen</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>785cbd474febb1bfa9c0e14abaf9c4a8</sid><ORCID>0000-0002-5390-1879</ORCID><firstname>Stefan</firstname><surname>Eriksson</surname><name>Stefan Eriksson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>d9099cdd0f182eb9a1c8fc36ed94f53f</sid><firstname>Michael</firstname><surname>Charlton</surname><name>Michael Charlton</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>0c72afb63bd0c6089fc5b60bd096103e</sid><ORCID>0000-0002-9448-8419</ORCID><firstname>Christopher</firstname><surname>Baker</surname><name>Christopher Baker</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>06d7ed42719ef7bb697cf780c63e26f0</sid><ORCID>0000-0002-7813-1903</ORCID><firstname>Aled</firstname><surname>Isaac</surname><name>Aled Isaac</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4a4149ebce588e432f310f4ab44dd82a</sid><ORCID>0000-0001-5436-5214</ORCID><firstname>Dirk</firstname><surname>van der Werf</surname><name>Dirk van der Werf</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e8ebdf12e608884a8d4ea4af35b89b46</sid><ORCID>0000-0001-5178-9492</ORCID><firstname>Daniel</firstname><surname>Maxwell</surname><name>Daniel Maxwell</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-09-19</date><deptcode>BGPS</deptcode><abstract>Magnetically trapped antihydrogen atoms can be cooled by expanding the volume of the trap in which they are confined. We report a proof-of-principle experiment in which antiatoms are deliberately released from expanded and static traps. Antiatoms escape at an average trap depth of 0.08 ± 0.01 K (statistical errors only) from the expanded trap while they escape at average depths of 0.22 ± 0.01 and 0.17 ± 0.01 K from two different static traps. (We employ temperature-equivalent energy units.) Detailed simulations qualitatively agree with the escape times measured in the experiment and show a decrease of 38% (statistical error &lt; 0.2%) in the mean energy of the population after the trap expansion without significantly increasing antiatom loss compared to typical static confinement protocols. This change is bracketed by the predictions of one-dimensional and three-dimensional semianalytic adiabatic expansion models. These experimental, simulational, and model results are consistent with obtaining an adiabatically cooled population of antihydrogen atoms that partially exchanged energy between axial and transverse degrees of freedom during the trap expansion. This result is important for future antihydrogen gravitational experiments which rely on adiabatic cooling, and it will enable antihydrogen cooling beyond the fundamental limits of laser cooling.</abstract><type>Journal Article</type><journal>PHYSICAL REVIEW RESEARCH</journal><volume>6</volume><journalNumber/><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords>Antihydrogen, Adiabatic Cooling, Exotic Atoms, Neutral atom trapping, Magnetic traps</keywords><publishedDay>16</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-09-16</publishedDate><doi>https://doi.org/10.1103/PhysRevResearch.6.L032065</doi><url>https://doi.org/10.1103/PhysRevResearch.6.L032065</url><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>EPSRC, Leverhulme Trust, The Royal Society</funders><projectreference/><lastEdited>2024-09-19T08:13:48.7137564</lastEdited><Created>2024-09-19T08:05:27.5323860</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Niels</firstname><surname>Madsen</surname><orcid>0000-0002-7372-0784</orcid><order>1</order></author><author><firstname>Stefan</firstname><surname>Eriksson</surname><orcid>0000-0002-5390-1879</orcid><order>2</order></author><author><firstname>Michael</firstname><surname>Charlton</surname><order>3</order></author><author><firstname>Christopher</firstname><surname>Baker</surname><orcid>0000-0002-9448-8419</orcid><order>4</order></author><author><firstname>Aled</firstname><surname>Isaac</surname><orcid>0000-0002-7813-1903</orcid><order>5</order></author><author><firstname>Dirk</firstname><surname>van der Werf</surname><orcid>0000-0001-5436-5214</orcid><order>6</order></author><author><firstname>Daniel</firstname><surname>Maxwell</surname><orcid>0000-0001-5178-9492</orcid><order>7</order></author></authors><documents/><OutputDurs><OutputDur><Id>275</Id><IsDataAvailableOnline xsi:nil="true"/><DataNotAvailableOnlineReasonId xsi:nil="true"/><IsDurRestrictions xsi:nil="true"/><DurRestrictionReasonId xsi:nil="true"/><DurEmbargoDate xsi:nil="true"/></OutputDur></OutputDurs></rfc1807>
spelling v2 67727 2024-09-19 Adiabatic expansion cooling of antihydrogen e348e4d768ee19c1d0c68ce3a66d6303 0000-0002-7372-0784 Niels Madsen Niels Madsen true false 785cbd474febb1bfa9c0e14abaf9c4a8 0000-0002-5390-1879 Stefan Eriksson Stefan Eriksson true false d9099cdd0f182eb9a1c8fc36ed94f53f Michael Charlton Michael Charlton true false 0c72afb63bd0c6089fc5b60bd096103e 0000-0002-9448-8419 Christopher Baker Christopher Baker true false 06d7ed42719ef7bb697cf780c63e26f0 0000-0002-7813-1903 Aled Isaac Aled Isaac true false 4a4149ebce588e432f310f4ab44dd82a 0000-0001-5436-5214 Dirk van der Werf Dirk van der Werf true false e8ebdf12e608884a8d4ea4af35b89b46 0000-0001-5178-9492 Daniel Maxwell Daniel Maxwell true false 2024-09-19 BGPS Magnetically trapped antihydrogen atoms can be cooled by expanding the volume of the trap in which they are confined. We report a proof-of-principle experiment in which antiatoms are deliberately released from expanded and static traps. Antiatoms escape at an average trap depth of 0.08 ± 0.01 K (statistical errors only) from the expanded trap while they escape at average depths of 0.22 ± 0.01 and 0.17 ± 0.01 K from two different static traps. (We employ temperature-equivalent energy units.) Detailed simulations qualitatively agree with the escape times measured in the experiment and show a decrease of 38% (statistical error < 0.2%) in the mean energy of the population after the trap expansion without significantly increasing antiatom loss compared to typical static confinement protocols. This change is bracketed by the predictions of one-dimensional and three-dimensional semianalytic adiabatic expansion models. These experimental, simulational, and model results are consistent with obtaining an adiabatically cooled population of antihydrogen atoms that partially exchanged energy between axial and transverse degrees of freedom during the trap expansion. This result is important for future antihydrogen gravitational experiments which rely on adiabatic cooling, and it will enable antihydrogen cooling beyond the fundamental limits of laser cooling. Journal Article PHYSICAL REVIEW RESEARCH 6 Antihydrogen, Adiabatic Cooling, Exotic Atoms, Neutral atom trapping, Magnetic traps 16 9 2024 2024-09-16 https://doi.org/10.1103/PhysRevResearch.6.L032065 https://doi.org/10.1103/PhysRevResearch.6.L032065 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University Another institution paid the OA fee EPSRC, Leverhulme Trust, The Royal Society 2024-09-19T08:13:48.7137564 2024-09-19T08:05:27.5323860 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Niels Madsen 0000-0002-7372-0784 1 Stefan Eriksson 0000-0002-5390-1879 2 Michael Charlton 3 Christopher Baker 0000-0002-9448-8419 4 Aled Isaac 0000-0002-7813-1903 5 Dirk van der Werf 0000-0001-5436-5214 6 Daniel Maxwell 0000-0001-5178-9492 7 275
title Adiabatic expansion cooling of antihydrogen
spellingShingle Adiabatic expansion cooling of antihydrogen
Niels Madsen
Stefan Eriksson
Michael Charlton
Christopher Baker
Aled Isaac
Dirk van der Werf
Daniel Maxwell
title_short Adiabatic expansion cooling of antihydrogen
title_full Adiabatic expansion cooling of antihydrogen
title_fullStr Adiabatic expansion cooling of antihydrogen
title_full_unstemmed Adiabatic expansion cooling of antihydrogen
title_sort Adiabatic expansion cooling of antihydrogen
author_id_str_mv e348e4d768ee19c1d0c68ce3a66d6303
785cbd474febb1bfa9c0e14abaf9c4a8
d9099cdd0f182eb9a1c8fc36ed94f53f
0c72afb63bd0c6089fc5b60bd096103e
06d7ed42719ef7bb697cf780c63e26f0
4a4149ebce588e432f310f4ab44dd82a
e8ebdf12e608884a8d4ea4af35b89b46
author_id_fullname_str_mv e348e4d768ee19c1d0c68ce3a66d6303_***_Niels Madsen
785cbd474febb1bfa9c0e14abaf9c4a8_***_Stefan Eriksson
d9099cdd0f182eb9a1c8fc36ed94f53f_***_Michael Charlton
0c72afb63bd0c6089fc5b60bd096103e_***_Christopher Baker
06d7ed42719ef7bb697cf780c63e26f0_***_Aled Isaac
4a4149ebce588e432f310f4ab44dd82a_***_Dirk van der Werf
e8ebdf12e608884a8d4ea4af35b89b46_***_Daniel Maxwell
author Niels Madsen
Stefan Eriksson
Michael Charlton
Christopher Baker
Aled Isaac
Dirk van der Werf
Daniel Maxwell
author2 Niels Madsen
Stefan Eriksson
Michael Charlton
Christopher Baker
Aled Isaac
Dirk van der Werf
Daniel Maxwell
format Journal article
container_title PHYSICAL REVIEW RESEARCH
container_volume 6
publishDate 2024
institution Swansea University
doi_str_mv https://doi.org/10.1103/PhysRevResearch.6.L032065
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
url https://doi.org/10.1103/PhysRevResearch.6.L032065
document_store_str 0
active_str 0
description Magnetically trapped antihydrogen atoms can be cooled by expanding the volume of the trap in which they are confined. We report a proof-of-principle experiment in which antiatoms are deliberately released from expanded and static traps. Antiatoms escape at an average trap depth of 0.08 ± 0.01 K (statistical errors only) from the expanded trap while they escape at average depths of 0.22 ± 0.01 and 0.17 ± 0.01 K from two different static traps. (We employ temperature-equivalent energy units.) Detailed simulations qualitatively agree with the escape times measured in the experiment and show a decrease of 38% (statistical error < 0.2%) in the mean energy of the population after the trap expansion without significantly increasing antiatom loss compared to typical static confinement protocols. This change is bracketed by the predictions of one-dimensional and three-dimensional semianalytic adiabatic expansion models. These experimental, simulational, and model results are consistent with obtaining an adiabatically cooled population of antihydrogen atoms that partially exchanged energy between axial and transverse degrees of freedom during the trap expansion. This result is important for future antihydrogen gravitational experiments which rely on adiabatic cooling, and it will enable antihydrogen cooling beyond the fundamental limits of laser cooling.
published_date 2024-09-16T08:13:49Z
_version_ 1810607667925745664
score 11.028798