Journal article 66 views
Microbiome and epigenetic variation in wild fish with low genetic diversity
Nature Communications, Volume: 15, Issue: 1
Swansea University Authors: Tamsyn Uren Webster , Matthew Hitchings , Carlos Garcia De Leaniz , Sofia Consuegra del Olmo
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1038/s41467-024-49162-8
Abstract
Non-genetic sources of phenotypic variation, such as the epigenome and the microbiome, could be important contributors to adaptive variation for species with low genetic diversity. However, little is known about the complex interaction between these factors and the genetic diversity of the host, par...
Published in: | Nature Communications |
---|---|
ISSN: | 2041-1723 |
Published: |
Springer Science and Business Media LLC
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa67975 |
Abstract: |
Non-genetic sources of phenotypic variation, such as the epigenome and the microbiome, could be important contributors to adaptive variation for species with low genetic diversity. However, little is known about the complex interaction between these factors and the genetic diversity of the host, particularly in wild populations. Here, we examine the skin microbiome composition of two closely-related mangrove killifish species with different mating systems (self-fertilising and outcrossing) under sympatric and allopatric conditions. This allows us to partition the influence of the genotype and the environment on their microbiome and (previously described) epigenetic profiles. We find the diversity and community composition of the skin microbiome are strongly shaped by the environment and, to a lesser extent, by species-specific influences. Heterozygosity and microbiome alpha diversity, but not epigenetic variation, are associated with the fluctuating asymmetry of traits related to performance (vision) and behaviour (aggression). Our study identifies that a proportion of the epigenetic diversity and microbiome differentiation is unrelated to genetic variation, and we find evidence for an associative relationship between microbiome and epigenetic diversity in these wild populations. This suggests that both mechanisms could potentially contribute to variation in species with low genetic diversity. |
---|---|
College: |
Faculty of Science and Engineering |
Funders: |
We are grateful to ICMbio for providing help with accommodation and facilities and to Sergio Lima, Helder M.V. Espírito-Santo, Mateus Lira for support during sample collections. Fieldwork was supported by the National Geographic/Waitt program [W461-16] to SC and by a scholarship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to WMB-F. I.A. was supported by a Commonwealth PhD Scholarship (BDCS-2020-41). S.C. was partially funded by a Royal Society Industry Fellowship Ref: IF\R1\231030. |
Issue: |
1 |