Journal article 420 views 282 downloads
Enhanced Bearing Fault Detection in Induction Motors Using Projection-Based SVM
IEEE Transactions on Industry Applications, Volume: 61, Issue: 3, Pages: 3623 - 3636
Swansea University Author:
Sara Sharifzadeh
-
PDF | Accepted Manuscript
Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy.
Download (1.58MB)
DOI (Published version): 10.1109/tia.2025.3536425
Abstract
Enhanced Bearing Fault Detection in Induction Motors Using Projection-Based SVM
| Published in: | IEEE Transactions on Industry Applications |
|---|---|
| ISSN: | 0093-9994 1939-9367 |
| Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2025
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa68949 |
| first_indexed |
2025-02-23T22:43:12Z |
|---|---|
| last_indexed |
2025-07-09T05:00:49Z |
| id |
cronfa68949 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-07-08T12:33:01.9457773</datestamp><bib-version>v2</bib-version><id>68949</id><entry>2025-02-23</entry><title>Enhanced Bearing Fault Detection in Induction Motors Using Projection-Based SVM</title><swanseaauthors><author><sid>a4e15f304398ecee3f28c7faec69c1b0</sid><ORCID>0000-0003-4621-2917</ORCID><firstname>Sara</firstname><surname>Sharifzadeh</surname><name>Sara Sharifzadeh</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-02-23</date><deptcode>MACS</deptcode><abstract/><type>Journal Article</type><journal>IEEE Transactions on Industry Applications</journal><volume>61</volume><journalNumber>3</journalNumber><paginationStart>3623</paginationStart><paginationEnd>3636</paginationEnd><publisher>Institute of Electrical and Electronics Engineers (IEEE)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0093-9994</issnPrint><issnElectronic>1939-9367</issnElectronic><keywords>Support vector machines, Recurrent neural networks, Pipeline processing, Fault detection, Feature extraction, Accuracy, Induction motors, Fault diagnosis, Optimization, Current measurement</keywords><publishedDay>1</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-05-01</publishedDate><doi>10.1109/tia.2025.3536425</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders/><projectreference/><lastEdited>2025-07-08T12:33:01.9457773</lastEdited><Created>2025-02-23T22:26:52.8031225</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Narges Khadem</firstname><surname>Hosseini</surname><order>1</order></author><author><firstname>Hamid</firstname><surname>Toshani</surname><order>2</order></author><author><firstname>Salman</firstname><surname>Abdi</surname><orcid>0000-0002-5424-4479</orcid><order>3</order></author><author><firstname>Sara</firstname><surname>Sharifzadeh</surname><orcid>0000-0003-4621-2917</orcid><order>4</order></author></authors><documents><document><filename>68949__33870__e9f5e0a3a29e4192ab119ab6c8d8c951.pdf</filename><originalFilename>68949.AAM.pdf</originalFilename><uploaded>2025-03-25T09:06:00.1353658</uploaded><type>Output</type><contentLength>1657931</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2025-07-08T12:33:01.9457773 v2 68949 2025-02-23 Enhanced Bearing Fault Detection in Induction Motors Using Projection-Based SVM a4e15f304398ecee3f28c7faec69c1b0 0000-0003-4621-2917 Sara Sharifzadeh Sara Sharifzadeh true false 2025-02-23 MACS Journal Article IEEE Transactions on Industry Applications 61 3 3623 3636 Institute of Electrical and Electronics Engineers (IEEE) 0093-9994 1939-9367 Support vector machines, Recurrent neural networks, Pipeline processing, Fault detection, Feature extraction, Accuracy, Induction motors, Fault diagnosis, Optimization, Current measurement 1 5 2025 2025-05-01 10.1109/tia.2025.3536425 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University Not Required 2025-07-08T12:33:01.9457773 2025-02-23T22:26:52.8031225 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Narges Khadem Hosseini 1 Hamid Toshani 2 Salman Abdi 0000-0002-5424-4479 3 Sara Sharifzadeh 0000-0003-4621-2917 4 68949__33870__e9f5e0a3a29e4192ab119ab6c8d8c951.pdf 68949.AAM.pdf 2025-03-25T09:06:00.1353658 Output 1657931 application/pdf Accepted Manuscript true Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy. true eng https://creativecommons.org/licenses/by/4.0/ |
| title |
Enhanced Bearing Fault Detection in Induction Motors Using Projection-Based SVM |
| spellingShingle |
Enhanced Bearing Fault Detection in Induction Motors Using Projection-Based SVM Sara Sharifzadeh |
| title_short |
Enhanced Bearing Fault Detection in Induction Motors Using Projection-Based SVM |
| title_full |
Enhanced Bearing Fault Detection in Induction Motors Using Projection-Based SVM |
| title_fullStr |
Enhanced Bearing Fault Detection in Induction Motors Using Projection-Based SVM |
| title_full_unstemmed |
Enhanced Bearing Fault Detection in Induction Motors Using Projection-Based SVM |
| title_sort |
Enhanced Bearing Fault Detection in Induction Motors Using Projection-Based SVM |
| author_id_str_mv |
a4e15f304398ecee3f28c7faec69c1b0 |
| author_id_fullname_str_mv |
a4e15f304398ecee3f28c7faec69c1b0_***_Sara Sharifzadeh |
| author |
Sara Sharifzadeh |
| author2 |
Narges Khadem Hosseini Hamid Toshani Salman Abdi Sara Sharifzadeh |
| format |
Journal article |
| container_title |
IEEE Transactions on Industry Applications |
| container_volume |
61 |
| container_issue |
3 |
| container_start_page |
3623 |
| publishDate |
2025 |
| institution |
Swansea University |
| issn |
0093-9994 1939-9367 |
| doi_str_mv |
10.1109/tia.2025.3536425 |
| publisher |
Institute of Electrical and Electronics Engineers (IEEE) |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
| document_store_str |
1 |
| active_str |
0 |
| published_date |
2025-05-01T05:25:40Z |
| _version_ |
1851369497833766912 |
| score |
11.089572 |

