No Cover Image

Conference Paper/Proceeding/Abstract 135 views 25 downloads

Diffusion models and stochastic quantisation in lattice field theory

Gert Aarts Orcid Logo, Lingxiao Wang, Kai Zhou

Proceedings of The 41st International Symposium on Lattice Field Theory — PoS(LATTICE2024), Volume: 466, Start page: 037

Swansea University Author: Gert Aarts Orcid Logo

  • 69012.VoR.pdf

    PDF | Version of Record

    © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

    Download (1.62MB)

Check full text

DOI (Published version): 10.22323/1.466.0037

Abstract

Diffusion models are currently the leading generative AI approach used for image generation in e.g. DALL-E and Stable Diffusion. In this talk we relate diffusion models to stochastic quantisation in field theory and employ it to generate configurations for scalar fields on a two-dimensional lattice....

Full description

Published in: Proceedings of The 41st International Symposium on Lattice Field Theory — PoS(LATTICE2024)
ISSN: 1824-8039
Published: Trieste, Italy Sissa Medialab 2025
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa69012
first_indexed 2025-03-04T16:01:44Z
last_indexed 2025-04-24T06:19:32Z
id cronfa69012
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-04-23T16:10:39.3530151</datestamp><bib-version>v2</bib-version><id>69012</id><entry>2025-03-04</entry><title>Diffusion models and stochastic quantisation in lattice field theory</title><swanseaauthors><author><sid>1ba0dad382dfe18348ec32fc65f3f3de</sid><ORCID>0000-0002-6038-3782</ORCID><firstname>Gert</firstname><surname>Aarts</surname><name>Gert Aarts</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-03-04</date><deptcode>BGPS</deptcode><abstract>Diffusion models are currently the leading generative AI approach used for image generation in e.g. DALL-E and Stable Diffusion. In this talk we relate diffusion models to stochastic quantisation in field theory and employ it to generate configurations for scalar fields on a two-dimensional lattice. We end with some speculations on possible applications.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Proceedings of The 41st International Symposium on Lattice Field Theory &#x2014; PoS(LATTICE2024)</journal><volume>466</volume><journalNumber/><paginationStart>037</paginationStart><paginationEnd/><publisher>Sissa Medialab</publisher><placeOfPublication>Trieste, Italy</placeOfPublication><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>1824-8039</issnElectronic><keywords/><publishedDay>22</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-01-22</publishedDate><doi>10.22323/1.466.0037</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>GA is supported by STFC Consolidated Grant ST/X000648/1. LW thanks the DEEP-IN working group at RIKEN-iTHEMS for support. KZ is supported by the CUHK-Shenzhen University development fund under grant No. UDF01003041 and UDF03003041, and Shenzhen Peacock fund under No. 2023TC0179.</funders><projectreference/><lastEdited>2025-04-23T16:10:39.3530151</lastEdited><Created>2025-03-04T11:40:12.2983749</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Gert</firstname><surname>Aarts</surname><orcid>0000-0002-6038-3782</orcid><order>1</order></author><author><firstname>Lingxiao</firstname><surname>Wang</surname><order>2</order></author><author><firstname>Kai</firstname><surname>Zhou</surname><order>3</order></author></authors><documents><document><filename>69012__34072__e8e90f18a96e445db3357eac39ad7029.pdf</filename><originalFilename>69012.VoR.pdf</originalFilename><uploaded>2025-04-23T16:06:25.7347872</uploaded><type>Output</type><contentLength>1702957</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en</licence></document></documents><OutputDurs/></rfc1807>
spelling 2025-04-23T16:10:39.3530151 v2 69012 2025-03-04 Diffusion models and stochastic quantisation in lattice field theory 1ba0dad382dfe18348ec32fc65f3f3de 0000-0002-6038-3782 Gert Aarts Gert Aarts true false 2025-03-04 BGPS Diffusion models are currently the leading generative AI approach used for image generation in e.g. DALL-E and Stable Diffusion. In this talk we relate diffusion models to stochastic quantisation in field theory and employ it to generate configurations for scalar fields on a two-dimensional lattice. We end with some speculations on possible applications. Conference Paper/Proceeding/Abstract Proceedings of The 41st International Symposium on Lattice Field Theory — PoS(LATTICE2024) 466 037 Sissa Medialab Trieste, Italy 1824-8039 22 1 2025 2025-01-22 10.22323/1.466.0037 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University GA is supported by STFC Consolidated Grant ST/X000648/1. LW thanks the DEEP-IN working group at RIKEN-iTHEMS for support. KZ is supported by the CUHK-Shenzhen University development fund under grant No. UDF01003041 and UDF03003041, and Shenzhen Peacock fund under No. 2023TC0179. 2025-04-23T16:10:39.3530151 2025-03-04T11:40:12.2983749 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Gert Aarts 0000-0002-6038-3782 1 Lingxiao Wang 2 Kai Zhou 3 69012__34072__e8e90f18a96e445db3357eac39ad7029.pdf 69012.VoR.pdf 2025-04-23T16:06:25.7347872 Output 1702957 application/pdf Version of Record true © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). true eng https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
title Diffusion models and stochastic quantisation in lattice field theory
spellingShingle Diffusion models and stochastic quantisation in lattice field theory
Gert Aarts
title_short Diffusion models and stochastic quantisation in lattice field theory
title_full Diffusion models and stochastic quantisation in lattice field theory
title_fullStr Diffusion models and stochastic quantisation in lattice field theory
title_full_unstemmed Diffusion models and stochastic quantisation in lattice field theory
title_sort Diffusion models and stochastic quantisation in lattice field theory
author_id_str_mv 1ba0dad382dfe18348ec32fc65f3f3de
author_id_fullname_str_mv 1ba0dad382dfe18348ec32fc65f3f3de_***_Gert Aarts
author Gert Aarts
author2 Gert Aarts
Lingxiao Wang
Kai Zhou
format Conference Paper/Proceeding/Abstract
container_title Proceedings of The 41st International Symposium on Lattice Field Theory — PoS(LATTICE2024)
container_volume 466
container_start_page 037
publishDate 2025
institution Swansea University
issn 1824-8039
doi_str_mv 10.22323/1.466.0037
publisher Sissa Medialab
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
document_store_str 1
active_str 0
description Diffusion models are currently the leading generative AI approach used for image generation in e.g. DALL-E and Stable Diffusion. In this talk we relate diffusion models to stochastic quantisation in field theory and employ it to generate configurations for scalar fields on a two-dimensional lattice. We end with some speculations on possible applications.
published_date 2025-01-22T06:00:05Z
_version_ 1837325359119335424
score 11.069616