No Cover Image

Conference Paper/Proceeding/Abstract 120 views 30 downloads

Diffusion models learn distributions generated by complex Langevin dynamics

Diaa Eddin Habibi, Gert Aarts Orcid Logo, Lingxiao Wang, Kai Zhou

Proceedings of The 41st International Symposium on Lattice Field Theory — PoS(LATTICE2024), Volume: 466, Start page: 039

Swansea University Authors: Diaa Eddin Habibi, Gert Aarts Orcid Logo

  • 69013.VoR.pdf

    PDF | Version of Record

    © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

    Download (1.54MB)

Check full text

DOI (Published version): 10.22323/1.466.0039

Abstract

The probability distribution effectively sampled by a complex Langevin process for theories witha sign problem is not known a priori and notoriously hard to understand. Diffusion models, a classof generative AI, can learn distributions from data. In this contribution, we explore the ability ofdiffus...

Full description

Published in: Proceedings of The 41st International Symposium on Lattice Field Theory — PoS(LATTICE2024)
ISSN: 1824-8039
Published: Trieste, Italy Sissa Medialab 2025
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa69013
first_indexed 2025-03-04T16:01:44Z
last_indexed 2025-04-25T05:20:08Z
id cronfa69013
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-04-24T11:15:35.5203073</datestamp><bib-version>v2</bib-version><id>69013</id><entry>2025-03-04</entry><title>Diffusion models learn distributions generated by complex Langevin dynamics</title><swanseaauthors><author><sid>5d736de7adfea5495e2e56a4dcb42524</sid><firstname>Diaa Eddin</firstname><surname>Habibi</surname><name>Diaa Eddin Habibi</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>1ba0dad382dfe18348ec32fc65f3f3de</sid><ORCID>0000-0002-6038-3782</ORCID><firstname>Gert</firstname><surname>Aarts</surname><name>Gert Aarts</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-03-04</date><deptcode>BGPS</deptcode><abstract>The probability distribution effectively sampled by a complex Langevin process for theories witha sign problem is not known a priori and notoriously hard to understand. Diffusion models, a classof generative AI, can learn distributions from data. In this contribution, we explore the ability ofdiffusion models to learn the distributions created by a complex Langevin process.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Proceedings of The 41st International Symposium on Lattice Field Theory &#x2014; PoS(LATTICE2024)</journal><volume>466</volume><journalNumber/><paginationStart>039</paginationStart><paginationEnd/><publisher>Sissa Medialab</publisher><placeOfPublication>Trieste, Italy</placeOfPublication><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>1824-8039</issnElectronic><keywords/><publishedDay>13</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-01-13</publishedDate><doi>10.22323/1.466.0039</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>DEHis supportedby theUKRIAIMLACCDTEP/S023992/1. GAis supportedbySTFCConsolidatedGrantST/X000648/1.KZissupportedbytheCUHK-Shenzhen Universitydevelopment fundundergrantNo.UDF01003041andUDF03003041, andShenzhen PeacockfundunderNo.2023TC0179.</funders><projectreference/><lastEdited>2025-04-24T11:15:35.5203073</lastEdited><Created>2025-03-04T11:40:42.1453151</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Diaa Eddin</firstname><surname>Habibi</surname><order>1</order></author><author><firstname>Gert</firstname><surname>Aarts</surname><orcid>0000-0002-6038-3782</orcid><order>2</order></author><author><firstname>Lingxiao</firstname><surname>Wang</surname><order>3</order></author><author><firstname>Kai</firstname><surname>Zhou</surname><order>4</order></author></authors><documents><document><filename>69013__34083__cdbd29b4b77347a9bd335750be9330dd.pdf</filename><originalFilename>69013.VoR.pdf</originalFilename><uploaded>2025-04-24T11:13:44.4992222</uploaded><type>Output</type><contentLength>1613761</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en</licence></document></documents><OutputDurs/></rfc1807>
spelling 2025-04-24T11:15:35.5203073 v2 69013 2025-03-04 Diffusion models learn distributions generated by complex Langevin dynamics 5d736de7adfea5495e2e56a4dcb42524 Diaa Eddin Habibi Diaa Eddin Habibi true false 1ba0dad382dfe18348ec32fc65f3f3de 0000-0002-6038-3782 Gert Aarts Gert Aarts true false 2025-03-04 BGPS The probability distribution effectively sampled by a complex Langevin process for theories witha sign problem is not known a priori and notoriously hard to understand. Diffusion models, a classof generative AI, can learn distributions from data. In this contribution, we explore the ability ofdiffusion models to learn the distributions created by a complex Langevin process. Conference Paper/Proceeding/Abstract Proceedings of The 41st International Symposium on Lattice Field Theory — PoS(LATTICE2024) 466 039 Sissa Medialab Trieste, Italy 1824-8039 13 1 2025 2025-01-13 10.22323/1.466.0039 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University DEHis supportedby theUKRIAIMLACCDTEP/S023992/1. GAis supportedbySTFCConsolidatedGrantST/X000648/1.KZissupportedbytheCUHK-Shenzhen Universitydevelopment fundundergrantNo.UDF01003041andUDF03003041, andShenzhen PeacockfundunderNo.2023TC0179. 2025-04-24T11:15:35.5203073 2025-03-04T11:40:42.1453151 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Diaa Eddin Habibi 1 Gert Aarts 0000-0002-6038-3782 2 Lingxiao Wang 3 Kai Zhou 4 69013__34083__cdbd29b4b77347a9bd335750be9330dd.pdf 69013.VoR.pdf 2025-04-24T11:13:44.4992222 Output 1613761 application/pdf Version of Record true © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). true eng https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
title Diffusion models learn distributions generated by complex Langevin dynamics
spellingShingle Diffusion models learn distributions generated by complex Langevin dynamics
Diaa Eddin Habibi
Gert Aarts
title_short Diffusion models learn distributions generated by complex Langevin dynamics
title_full Diffusion models learn distributions generated by complex Langevin dynamics
title_fullStr Diffusion models learn distributions generated by complex Langevin dynamics
title_full_unstemmed Diffusion models learn distributions generated by complex Langevin dynamics
title_sort Diffusion models learn distributions generated by complex Langevin dynamics
author_id_str_mv 5d736de7adfea5495e2e56a4dcb42524
1ba0dad382dfe18348ec32fc65f3f3de
author_id_fullname_str_mv 5d736de7adfea5495e2e56a4dcb42524_***_Diaa Eddin Habibi
1ba0dad382dfe18348ec32fc65f3f3de_***_Gert Aarts
author Diaa Eddin Habibi
Gert Aarts
author2 Diaa Eddin Habibi
Gert Aarts
Lingxiao Wang
Kai Zhou
format Conference Paper/Proceeding/Abstract
container_title Proceedings of The 41st International Symposium on Lattice Field Theory — PoS(LATTICE2024)
container_volume 466
container_start_page 039
publishDate 2025
institution Swansea University
issn 1824-8039
doi_str_mv 10.22323/1.466.0039
publisher Sissa Medialab
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
document_store_str 1
active_str 0
description The probability distribution effectively sampled by a complex Langevin process for theories witha sign problem is not known a priori and notoriously hard to understand. Diffusion models, a classof generative AI, can learn distributions from data. In this contribution, we explore the ability ofdiffusion models to learn the distributions created by a complex Langevin process.
published_date 2025-01-13T05:46:06Z
_version_ 1837868061289349120
score 11.07004