No Cover Image

Conference Paper/Proceeding/Abstract 102 views 18 downloads

Multi-objective reinforcement learning strategies for the control of storm-water systems under distributional shift

Daisy Welham, Sara Sharifzadeh Orcid Logo, Liam Butler, Chedly Tizaoui Orcid Logo

IEEE Symposium on Computational Intelligence for Energy, Transport and Environmental Sustainability Companion Site, Issue: IEEE Symposium on Computational Intelligence

Swansea University Authors: Daisy Welham, Sara Sharifzadeh Orcid Logo, Chedly Tizaoui Orcid Logo

  • Multiobjective_RL_CameraReady.pdf

    PDF | Accepted Manuscript

    Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).

    Download (148.33KB)
Published in: IEEE Symposium on Computational Intelligence for Energy, Transport and Environmental Sustainability Companion Site
Published:
URI: https://cronfa.swan.ac.uk/Record/cronfa69136
first_indexed 2025-03-22T13:38:34Z
last_indexed 2025-06-03T04:46:07Z
id cronfa69136
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-06-02T16:35:18.0561352</datestamp><bib-version>v2</bib-version><id>69136</id><entry>2025-03-22</entry><title>Multi-objective reinforcement learning strategies for the control of storm-water systems under distributional shift</title><swanseaauthors><author><sid>3c1fe646c0be1aa75376108d1b3dcee1</sid><firstname>Daisy</firstname><surname>Welham</surname><name>Daisy Welham</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a4e15f304398ecee3f28c7faec69c1b0</sid><ORCID>0000-0003-4621-2917</ORCID><firstname>Sara</firstname><surname>Sharifzadeh</surname><name>Sara Sharifzadeh</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4b34a0286d3c0b0b081518fa6987031d</sid><ORCID>0000-0003-2159-7881</ORCID><firstname>Chedly</firstname><surname>Tizaoui</surname><name>Chedly Tizaoui</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-03-22</date><deptcode>MACS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>IEEE Symposium on Computational Intelligence for Energy, Transport and Environmental Sustainability Companion Site</journal><volume/><journalNumber>IEEE Symposium on Computational Intelligence</journalNumber><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords/><publishedDay>0</publishedDay><publishedMonth>0</publishedMonth><publishedYear>0</publishedYear><publishedDate>0001-01-01</publishedDate><doi/><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>Other</apcterm><funders>This project is part funded by an EPSRC Centre for Doctoral Training Grant and part funded by Dwr Cymru Cyfyngedig. Research is co-funded between Swansea University HCI CDT and Welsh Water</funders><projectreference/><lastEdited>2025-06-02T16:35:18.0561352</lastEdited><Created>2025-03-22T13:31:32.6752186</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Daisy</firstname><surname>Welham</surname><order>1</order></author><author><firstname>Sara</firstname><surname>Sharifzadeh</surname><orcid>0000-0003-4621-2917</orcid><order>2</order></author><author><firstname>Liam</firstname><surname>Butler</surname><order>3</order></author><author><firstname>Chedly</firstname><surname>Tizaoui</surname><orcid>0000-0003-2159-7881</orcid><order>4</order></author></authors><documents><document><filename>69136__33860__a8766a9cd347419685e5fb37c46db3b8.pdf</filename><originalFilename>Multiobjective_RL_CameraReady.pdf</originalFilename><uploaded>2025-03-22T13:37:45.8803130</uploaded><type>Output</type><contentLength>151886</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2025-04-22T00:00:00.0000000</embargoDate><documentNotes>Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/deed.en</licence></document></documents><OutputDurs/></rfc1807>
spelling 2025-06-02T16:35:18.0561352 v2 69136 2025-03-22 Multi-objective reinforcement learning strategies for the control of storm-water systems under distributional shift 3c1fe646c0be1aa75376108d1b3dcee1 Daisy Welham Daisy Welham true false a4e15f304398ecee3f28c7faec69c1b0 0000-0003-4621-2917 Sara Sharifzadeh Sara Sharifzadeh true false 4b34a0286d3c0b0b081518fa6987031d 0000-0003-2159-7881 Chedly Tizaoui Chedly Tizaoui true false 2025-03-22 MACS Conference Paper/Proceeding/Abstract IEEE Symposium on Computational Intelligence for Energy, Transport and Environmental Sustainability Companion Site IEEE Symposium on Computational Intelligence 0 0 0 0001-01-01 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University Other This project is part funded by an EPSRC Centre for Doctoral Training Grant and part funded by Dwr Cymru Cyfyngedig. Research is co-funded between Swansea University HCI CDT and Welsh Water 2025-06-02T16:35:18.0561352 2025-03-22T13:31:32.6752186 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Daisy Welham 1 Sara Sharifzadeh 0000-0003-4621-2917 2 Liam Butler 3 Chedly Tizaoui 0000-0003-2159-7881 4 69136__33860__a8766a9cd347419685e5fb37c46db3b8.pdf Multiobjective_RL_CameraReady.pdf 2025-03-22T13:37:45.8803130 Output 151886 application/pdf Accepted Manuscript true 2025-04-22T00:00:00.0000000 Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention). true eng https://creativecommons.org/licenses/by/4.0/deed.en
title Multi-objective reinforcement learning strategies for the control of storm-water systems under distributional shift
spellingShingle Multi-objective reinforcement learning strategies for the control of storm-water systems under distributional shift
Daisy Welham
Sara Sharifzadeh
Chedly Tizaoui
title_short Multi-objective reinforcement learning strategies for the control of storm-water systems under distributional shift
title_full Multi-objective reinforcement learning strategies for the control of storm-water systems under distributional shift
title_fullStr Multi-objective reinforcement learning strategies for the control of storm-water systems under distributional shift
title_full_unstemmed Multi-objective reinforcement learning strategies for the control of storm-water systems under distributional shift
title_sort Multi-objective reinforcement learning strategies for the control of storm-water systems under distributional shift
author_id_str_mv 3c1fe646c0be1aa75376108d1b3dcee1
a4e15f304398ecee3f28c7faec69c1b0
4b34a0286d3c0b0b081518fa6987031d
author_id_fullname_str_mv 3c1fe646c0be1aa75376108d1b3dcee1_***_Daisy Welham
a4e15f304398ecee3f28c7faec69c1b0_***_Sara Sharifzadeh
4b34a0286d3c0b0b081518fa6987031d_***_Chedly Tizaoui
author Daisy Welham
Sara Sharifzadeh
Chedly Tizaoui
author2 Daisy Welham
Sara Sharifzadeh
Liam Butler
Chedly Tizaoui
format Conference Paper/Proceeding/Abstract
container_title IEEE Symposium on Computational Intelligence for Energy, Transport and Environmental Sustainability Companion Site
container_issue IEEE Symposium on Computational Intelligence
institution Swansea University
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
document_store_str 1
active_str 0
published_date 0001-01-01T11:45:37Z
_version_ 1835353964571262976
score 11.065075