Conference Paper/Proceeding/Abstract 102 views 18 downloads
Multi-objective reinforcement learning strategies for the control of storm-water systems under distributional shift
IEEE Symposium on Computational Intelligence for Energy, Transport and Environmental Sustainability Companion Site, Issue: IEEE Symposium on Computational Intelligence
Swansea University Authors:
Daisy Welham, Sara Sharifzadeh , Chedly Tizaoui
-
PDF | Accepted Manuscript
Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).
Download (148.33KB)
Abstract
Multi-objective reinforcement learning strategies for the control of storm-water systems under distributional shift
Published in: | IEEE Symposium on Computational Intelligence for Energy, Transport and Environmental Sustainability Companion Site |
---|---|
Published: |
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa69136 |
first_indexed |
2025-03-22T13:38:34Z |
---|---|
last_indexed |
2025-06-03T04:46:07Z |
id |
cronfa69136 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-06-02T16:35:18.0561352</datestamp><bib-version>v2</bib-version><id>69136</id><entry>2025-03-22</entry><title>Multi-objective reinforcement learning strategies for the control of storm-water systems under distributional shift</title><swanseaauthors><author><sid>3c1fe646c0be1aa75376108d1b3dcee1</sid><firstname>Daisy</firstname><surname>Welham</surname><name>Daisy Welham</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a4e15f304398ecee3f28c7faec69c1b0</sid><ORCID>0000-0003-4621-2917</ORCID><firstname>Sara</firstname><surname>Sharifzadeh</surname><name>Sara Sharifzadeh</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4b34a0286d3c0b0b081518fa6987031d</sid><ORCID>0000-0003-2159-7881</ORCID><firstname>Chedly</firstname><surname>Tizaoui</surname><name>Chedly Tizaoui</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-03-22</date><deptcode>MACS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>IEEE Symposium on Computational Intelligence for Energy, Transport and Environmental Sustainability Companion Site</journal><volume/><journalNumber>IEEE Symposium on Computational Intelligence</journalNumber><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords/><publishedDay>0</publishedDay><publishedMonth>0</publishedMonth><publishedYear>0</publishedYear><publishedDate>0001-01-01</publishedDate><doi/><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>Other</apcterm><funders>This project is part funded by an EPSRC Centre for Doctoral Training
Grant and part funded by Dwr Cymru Cyfyngedig. Research is co-funded between Swansea University HCI CDT and Welsh Water</funders><projectreference/><lastEdited>2025-06-02T16:35:18.0561352</lastEdited><Created>2025-03-22T13:31:32.6752186</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Daisy</firstname><surname>Welham</surname><order>1</order></author><author><firstname>Sara</firstname><surname>Sharifzadeh</surname><orcid>0000-0003-4621-2917</orcid><order>2</order></author><author><firstname>Liam</firstname><surname>Butler</surname><order>3</order></author><author><firstname>Chedly</firstname><surname>Tizaoui</surname><orcid>0000-0003-2159-7881</orcid><order>4</order></author></authors><documents><document><filename>69136__33860__a8766a9cd347419685e5fb37c46db3b8.pdf</filename><originalFilename>Multiobjective_RL_CameraReady.pdf</originalFilename><uploaded>2025-03-22T13:37:45.8803130</uploaded><type>Output</type><contentLength>151886</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2025-04-22T00:00:00.0000000</embargoDate><documentNotes>Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/deed.en</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2025-06-02T16:35:18.0561352 v2 69136 2025-03-22 Multi-objective reinforcement learning strategies for the control of storm-water systems under distributional shift 3c1fe646c0be1aa75376108d1b3dcee1 Daisy Welham Daisy Welham true false a4e15f304398ecee3f28c7faec69c1b0 0000-0003-4621-2917 Sara Sharifzadeh Sara Sharifzadeh true false 4b34a0286d3c0b0b081518fa6987031d 0000-0003-2159-7881 Chedly Tizaoui Chedly Tizaoui true false 2025-03-22 MACS Conference Paper/Proceeding/Abstract IEEE Symposium on Computational Intelligence for Energy, Transport and Environmental Sustainability Companion Site IEEE Symposium on Computational Intelligence 0 0 0 0001-01-01 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University Other This project is part funded by an EPSRC Centre for Doctoral Training Grant and part funded by Dwr Cymru Cyfyngedig. Research is co-funded between Swansea University HCI CDT and Welsh Water 2025-06-02T16:35:18.0561352 2025-03-22T13:31:32.6752186 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Daisy Welham 1 Sara Sharifzadeh 0000-0003-4621-2917 2 Liam Butler 3 Chedly Tizaoui 0000-0003-2159-7881 4 69136__33860__a8766a9cd347419685e5fb37c46db3b8.pdf Multiobjective_RL_CameraReady.pdf 2025-03-22T13:37:45.8803130 Output 151886 application/pdf Accepted Manuscript true 2025-04-22T00:00:00.0000000 Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention). true eng https://creativecommons.org/licenses/by/4.0/deed.en |
title |
Multi-objective reinforcement learning strategies for the control of storm-water systems under distributional shift |
spellingShingle |
Multi-objective reinforcement learning strategies for the control of storm-water systems under distributional shift Daisy Welham Sara Sharifzadeh Chedly Tizaoui |
title_short |
Multi-objective reinforcement learning strategies for the control of storm-water systems under distributional shift |
title_full |
Multi-objective reinforcement learning strategies for the control of storm-water systems under distributional shift |
title_fullStr |
Multi-objective reinforcement learning strategies for the control of storm-water systems under distributional shift |
title_full_unstemmed |
Multi-objective reinforcement learning strategies for the control of storm-water systems under distributional shift |
title_sort |
Multi-objective reinforcement learning strategies for the control of storm-water systems under distributional shift |
author_id_str_mv |
3c1fe646c0be1aa75376108d1b3dcee1 a4e15f304398ecee3f28c7faec69c1b0 4b34a0286d3c0b0b081518fa6987031d |
author_id_fullname_str_mv |
3c1fe646c0be1aa75376108d1b3dcee1_***_Daisy Welham a4e15f304398ecee3f28c7faec69c1b0_***_Sara Sharifzadeh 4b34a0286d3c0b0b081518fa6987031d_***_Chedly Tizaoui |
author |
Daisy Welham Sara Sharifzadeh Chedly Tizaoui |
author2 |
Daisy Welham Sara Sharifzadeh Liam Butler Chedly Tizaoui |
format |
Conference Paper/Proceeding/Abstract |
container_title |
IEEE Symposium on Computational Intelligence for Energy, Transport and Environmental Sustainability Companion Site |
container_issue |
IEEE Symposium on Computational Intelligence |
institution |
Swansea University |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
published_date |
0001-01-01T11:45:37Z |
_version_ |
1835353964571262976 |
score |
11.065075 |