No Cover Image

Conference Paper/Proceeding/Abstract 325 views

QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations

Jamie Duell, Monika Seisenberger Orcid Logo, Hsuan Fu, Xiuyi Fan

2024 IEEE International Conference on Data Mining (ICDM), Pages: 693 - 698

Swansea University Author: Monika Seisenberger Orcid Logo

Full text not available from this repository: check for access using links below.

Published in: 2024 IEEE International Conference on Data Mining (ICDM)
ISBN: 979-8-3315-0669-8 979-8-3315-0668-1
ISSN: 1550-4786 2374-8486
Published: IEEE 2025
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa69248
first_indexed 2025-04-10T06:02:21Z
last_indexed 2025-08-01T14:31:31Z
id cronfa69248
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-07-31T16:46:30.1814586</datestamp><bib-version>v2</bib-version><id>69248</id><entry>2025-04-10</entry><title>QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations</title><swanseaauthors><author><sid>d035399b2b324a63fe472ce0344653e0</sid><ORCID>0000-0002-2226-386X</ORCID><firstname>Monika</firstname><surname>Seisenberger</surname><name>Monika Seisenberger</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-04-10</date><deptcode>MACS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>2024 IEEE International Conference on Data Mining (ICDM)</journal><volume>0</volume><journalNumber/><paginationStart>693</paginationStart><paginationEnd>698</paginationEnd><publisher>IEEE</publisher><placeOfPublication/><isbnPrint>979-8-3315-0669-8</isbnPrint><isbnElectronic>979-8-3315-0668-1</isbnElectronic><issnPrint>1550-4786</issnPrint><issnElectronic>2374-8486</issnElectronic><keywords>Measurement, Uncertainty, Computational modeling, Artificial neural networks, Machine learning,Feature extraction, Minimization, Complexity theory, Reliability, Data mining</keywords><publishedDay>21</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-02-21</publishedDate><doi>10.1109/icdm59182.2024.00078</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2025-07-31T16:46:30.1814586</lastEdited><Created>2025-04-10T01:16:03.6355889</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Jamie</firstname><surname>Duell</surname><order>1</order></author><author><firstname>Monika</firstname><surname>Seisenberger</surname><orcid>0000-0002-2226-386X</orcid><order>2</order></author><author><firstname>Hsuan</firstname><surname>Fu</surname><order>3</order></author><author><firstname>Xiuyi</firstname><surname>Fan</surname><order>4</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2025-07-31T16:46:30.1814586 v2 69248 2025-04-10 QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations d035399b2b324a63fe472ce0344653e0 0000-0002-2226-386X Monika Seisenberger Monika Seisenberger true false 2025-04-10 MACS Conference Paper/Proceeding/Abstract 2024 IEEE International Conference on Data Mining (ICDM) 0 693 698 IEEE 979-8-3315-0669-8 979-8-3315-0668-1 1550-4786 2374-8486 Measurement, Uncertainty, Computational modeling, Artificial neural networks, Machine learning,Feature extraction, Minimization, Complexity theory, Reliability, Data mining 21 2 2025 2025-02-21 10.1109/icdm59182.2024.00078 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2025-07-31T16:46:30.1814586 2025-04-10T01:16:03.6355889 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Jamie Duell 1 Monika Seisenberger 0000-0002-2226-386X 2 Hsuan Fu 3 Xiuyi Fan 4
title QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations
spellingShingle QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations
Monika Seisenberger
title_short QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations
title_full QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations
title_fullStr QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations
title_full_unstemmed QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations
title_sort QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations
author_id_str_mv d035399b2b324a63fe472ce0344653e0
author_id_fullname_str_mv d035399b2b324a63fe472ce0344653e0_***_Monika Seisenberger
author Monika Seisenberger
author2 Jamie Duell
Monika Seisenberger
Hsuan Fu
Xiuyi Fan
format Conference Paper/Proceeding/Abstract
container_title 2024 IEEE International Conference on Data Mining (ICDM)
container_volume 0
container_start_page 693
publishDate 2025
institution Swansea University
isbn 979-8-3315-0669-8
979-8-3315-0668-1
issn 1550-4786
2374-8486
doi_str_mv 10.1109/icdm59182.2024.00078
publisher IEEE
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
document_store_str 0
active_str 0
published_date 2025-02-21T05:21:50Z
_version_ 1851731645286055936
score 11.090464