Conference Paper/Proceeding/Abstract 325 views
QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations
2024 IEEE International Conference on Data Mining (ICDM), Pages: 693 - 698
Swansea University Author:
Monika Seisenberger
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1109/icdm59182.2024.00078
Abstract
QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations
| Published in: | 2024 IEEE International Conference on Data Mining (ICDM) |
|---|---|
| ISBN: | 979-8-3315-0669-8 979-8-3315-0668-1 |
| ISSN: | 1550-4786 2374-8486 |
| Published: |
IEEE
2025
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa69248 |
| first_indexed |
2025-04-10T06:02:21Z |
|---|---|
| last_indexed |
2025-08-01T14:31:31Z |
| id |
cronfa69248 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-07-31T16:46:30.1814586</datestamp><bib-version>v2</bib-version><id>69248</id><entry>2025-04-10</entry><title>QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations</title><swanseaauthors><author><sid>d035399b2b324a63fe472ce0344653e0</sid><ORCID>0000-0002-2226-386X</ORCID><firstname>Monika</firstname><surname>Seisenberger</surname><name>Monika Seisenberger</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-04-10</date><deptcode>MACS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>2024 IEEE International Conference on Data Mining (ICDM)</journal><volume>0</volume><journalNumber/><paginationStart>693</paginationStart><paginationEnd>698</paginationEnd><publisher>IEEE</publisher><placeOfPublication/><isbnPrint>979-8-3315-0669-8</isbnPrint><isbnElectronic>979-8-3315-0668-1</isbnElectronic><issnPrint>1550-4786</issnPrint><issnElectronic>2374-8486</issnElectronic><keywords>Measurement, Uncertainty, Computational modeling, Artificial neural networks, Machine learning,Feature extraction, Minimization, Complexity theory, Reliability, Data mining</keywords><publishedDay>21</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-02-21</publishedDate><doi>10.1109/icdm59182.2024.00078</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2025-07-31T16:46:30.1814586</lastEdited><Created>2025-04-10T01:16:03.6355889</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Jamie</firstname><surname>Duell</surname><order>1</order></author><author><firstname>Monika</firstname><surname>Seisenberger</surname><orcid>0000-0002-2226-386X</orcid><order>2</order></author><author><firstname>Hsuan</firstname><surname>Fu</surname><order>3</order></author><author><firstname>Xiuyi</firstname><surname>Fan</surname><order>4</order></author></authors><documents/><OutputDurs/></rfc1807> |
| spelling |
2025-07-31T16:46:30.1814586 v2 69248 2025-04-10 QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations d035399b2b324a63fe472ce0344653e0 0000-0002-2226-386X Monika Seisenberger Monika Seisenberger true false 2025-04-10 MACS Conference Paper/Proceeding/Abstract 2024 IEEE International Conference on Data Mining (ICDM) 0 693 698 IEEE 979-8-3315-0669-8 979-8-3315-0668-1 1550-4786 2374-8486 Measurement, Uncertainty, Computational modeling, Artificial neural networks, Machine learning,Feature extraction, Minimization, Complexity theory, Reliability, Data mining 21 2 2025 2025-02-21 10.1109/icdm59182.2024.00078 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2025-07-31T16:46:30.1814586 2025-04-10T01:16:03.6355889 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Jamie Duell 1 Monika Seisenberger 0000-0002-2226-386X 2 Hsuan Fu 3 Xiuyi Fan 4 |
| title |
QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations |
| spellingShingle |
QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations Monika Seisenberger |
| title_short |
QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations |
| title_full |
QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations |
| title_fullStr |
QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations |
| title_full_unstemmed |
QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations |
| title_sort |
QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations |
| author_id_str_mv |
d035399b2b324a63fe472ce0344653e0 |
| author_id_fullname_str_mv |
d035399b2b324a63fe472ce0344653e0_***_Monika Seisenberger |
| author |
Monika Seisenberger |
| author2 |
Jamie Duell Monika Seisenberger Hsuan Fu Xiuyi Fan |
| format |
Conference Paper/Proceeding/Abstract |
| container_title |
2024 IEEE International Conference on Data Mining (ICDM) |
| container_volume |
0 |
| container_start_page |
693 |
| publishDate |
2025 |
| institution |
Swansea University |
| isbn |
979-8-3315-0669-8 979-8-3315-0668-1 |
| issn |
1550-4786 2374-8486 |
| doi_str_mv |
10.1109/icdm59182.2024.00078 |
| publisher |
IEEE |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
| document_store_str |
0 |
| active_str |
0 |
| published_date |
2025-02-21T05:21:50Z |
| _version_ |
1851731645286055936 |
| score |
11.090464 |

