No Cover Image

Journal article 475 views 83 downloads

Roll-to-roll slot-die coating of PTAA with PEDOT:PSS buffer layer for perovskite solar cells: coating analysis by XPS mapping

Rahul Patidar, James McGettrick Orcid Logo, Rodrigo Garcia Rodriguez, Christian Griffiths, Kathryn Lacey, Ershad Parvazian, David Beynon Orcid Logo, Matthew Davies Orcid Logo, Trystan Watson Orcid Logo

Journal of Materials Chemistry A, Volume: 13, Issue: 20, Pages: 14957 - 14963

Swansea University Authors: Rahul Patidar, James McGettrick Orcid Logo, Rodrigo Garcia Rodriguez, Christian Griffiths, Kathryn Lacey, Ershad Parvazian, David Beynon Orcid Logo, Matthew Davies Orcid Logo, Trystan Watson Orcid Logo

  • 69410.VoR.pdf

    PDF | Version of Record

    This article is licensed under the terms of a Creative Commons Attribution 3.0 Unported License.

    Download (784.22KB)

Check full text

DOI (Published version): 10.1039/d4ta06606e

Abstract

Roll-to-Roll (R2R) deposition offers a promising route for scaling up the production of perovskite solar cells (PSCs); however, the performance of R2R-fabricated devices still lags behind those produced through laboratory-scale methods. One significant factor contributing to this performance gap, pa...

Full description

Published in: Journal of Materials Chemistry A
ISSN: 2050-7488 2050-7496
Published: Royal Society of Chemistry (RSC) 2025
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa69410
first_indexed 2025-05-02T14:09:04Z
last_indexed 2025-06-19T10:46:29Z
id cronfa69410
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-06-18T14:57:09.1127776</datestamp><bib-version>v2</bib-version><id>69410</id><entry>2025-05-02</entry><title>Roll-to-roll slot-die coating of PTAA with PEDOT:PSS buffer layer for perovskite solar cells: coating analysis by XPS mapping</title><swanseaauthors><author><sid>aa7f3b2aa6daa1c80cad60a4dd59055b</sid><firstname>Rahul</firstname><surname>Patidar</surname><name>Rahul Patidar</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>bdbacc591e2de05180e0fd3cc13fa480</sid><ORCID>0000-0002-7719-2958</ORCID><firstname>James</firstname><surname>McGettrick</surname><name>James McGettrick</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>fb0f6e1eeb02aedee895b457faa35445</sid><firstname>Rodrigo</firstname><surname>Garcia Rodriguez</surname><name>Rodrigo Garcia Rodriguez</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>84c202c256a2950fbc52314df6ec4914</sid><ORCID/><firstname>Christian</firstname><surname>Griffiths</surname><name>Christian Griffiths</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a482d8085289c43024bb5ccaa5bfde3d</sid><ORCID/><firstname>Kathryn</firstname><surname>Lacey</surname><name>Kathryn Lacey</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>59dc6f18dde94e2a5fb2edd858270ec3</sid><firstname>Ershad</firstname><surname>Parvazian</surname><name>Ershad Parvazian</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>f5cf40043658d0b8a747ef6224019939</sid><ORCID>0000-0002-8189-9489</ORCID><firstname>David</firstname><surname>Beynon</surname><name>David Beynon</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4ad478e342120ca3434657eb13527636</sid><ORCID>0000-0003-2595-5121</ORCID><firstname>Matthew</firstname><surname>Davies</surname><name>Matthew Davies</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-05-02</date><deptcode>EAAS</deptcode><abstract>Roll-to-Roll (R2R) deposition offers a promising route for scaling up the production of perovskite solar cells (PSCs); however, the performance of R2R-fabricated devices still lags behind those produced through laboratory-scale methods. One significant factor contributing to this performance gap, particularly in P&#x2013;I&#x2013;N structured devices, is the use of suboptimal hole transport layers (HTLs), such as poly(3,4-ethylenedioxythiophene)&#x2013;polystyrenesulfonate (PEDOT:PSS). In this study, we explore the potential of replacing PEDOT:PSS with poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), a more efficient and stable HTL. While undoped PTAA alone shows promise, its application on the rough surface of PET-ITO substrates is insufficient to fully replace PEDOT:PSS, leading to reduced device performance. However, when combined with a PEDOT:PSS buffer layer, PTAA demonstrated significant improvements, achieving a power conversion efficiency (PCE) of 15.2% compared to 12.6% with PTAA alone using R2R deposition. To better understand the coating characteristics and interactions of these materials, we conducted a detailed analysis of the surface topography of PET-ITO and the HTL layer using X-ray photoelectron spectroscopy (XPS) mapping. This study provides critical insights into the synergistic effects of PEDOT:PSS and PTAA, highlighting their combined potential for enhancing the efficiency of R2R-fabricated PSCs.</abstract><type>Journal Article</type><journal>Journal of Materials Chemistry A</journal><volume>13</volume><journalNumber>20</journalNumber><paginationStart>14957</paginationStart><paginationEnd>14963</paginationEnd><publisher>Royal Society of Chemistry (RSC)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2050-7488</issnPrint><issnElectronic>2050-7496</issnElectronic><keywords/><publishedDay>20</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-03-20</publishedDate><doi>10.1039/d4ta06606e</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>This work was supported by the VIPERLAB project, funded by the European Union's Horizon 2020 research and innovation programme under grant agreement no. 101006715, the ATIP (Application Targeted and Integrated Photovoltaics) project under grant agreement EP/T028513/1, the EPSRC Prosperity Partnership [EP/X025217/1], and the Advanced Imaging of Materials (AIM) facility at Swansea University.</funders><projectreference/><lastEdited>2025-06-18T14:57:09.1127776</lastEdited><Created>2025-05-02T15:05:31.1811355</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Rahul</firstname><surname>Patidar</surname><order>1</order></author><author><firstname>James</firstname><surname>McGettrick</surname><orcid>0000-0002-7719-2958</orcid><order>2</order></author><author><firstname>Rodrigo</firstname><surname>Garcia Rodriguez</surname><order>3</order></author><author><firstname>Christian</firstname><surname>Griffiths</surname><orcid/><order>4</order></author><author><firstname>Kathryn</firstname><surname>Lacey</surname><orcid/><order>5</order></author><author><firstname>Ershad</firstname><surname>Parvazian</surname><order>6</order></author><author><firstname>David</firstname><surname>Beynon</surname><orcid>0000-0002-8189-9489</orcid><order>7</order></author><author><firstname>Matthew</firstname><surname>Davies</surname><orcid>0000-0003-2595-5121</orcid><order>8</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>9</order></author></authors><documents><document><filename>69410__34173__1fde6badbb0c413aa5d0c22e8703bd8d.pdf</filename><originalFilename>69410.VoR.pdf</originalFilename><uploaded>2025-05-02T15:15:49.2155096</uploaded><type>Output</type><contentLength>803046</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This article is licensed under the terms of a Creative Commons Attribution 3.0 Unported License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/3.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2025-06-18T14:57:09.1127776 v2 69410 2025-05-02 Roll-to-roll slot-die coating of PTAA with PEDOT:PSS buffer layer for perovskite solar cells: coating analysis by XPS mapping aa7f3b2aa6daa1c80cad60a4dd59055b Rahul Patidar Rahul Patidar true false bdbacc591e2de05180e0fd3cc13fa480 0000-0002-7719-2958 James McGettrick James McGettrick true false fb0f6e1eeb02aedee895b457faa35445 Rodrigo Garcia Rodriguez Rodrigo Garcia Rodriguez true false 84c202c256a2950fbc52314df6ec4914 Christian Griffiths Christian Griffiths true false a482d8085289c43024bb5ccaa5bfde3d Kathryn Lacey Kathryn Lacey true false 59dc6f18dde94e2a5fb2edd858270ec3 Ershad Parvazian Ershad Parvazian true false f5cf40043658d0b8a747ef6224019939 0000-0002-8189-9489 David Beynon David Beynon true false 4ad478e342120ca3434657eb13527636 0000-0003-2595-5121 Matthew Davies Matthew Davies true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 2025-05-02 EAAS Roll-to-Roll (R2R) deposition offers a promising route for scaling up the production of perovskite solar cells (PSCs); however, the performance of R2R-fabricated devices still lags behind those produced through laboratory-scale methods. One significant factor contributing to this performance gap, particularly in P–I–N structured devices, is the use of suboptimal hole transport layers (HTLs), such as poly(3,4-ethylenedioxythiophene)–polystyrenesulfonate (PEDOT:PSS). In this study, we explore the potential of replacing PEDOT:PSS with poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), a more efficient and stable HTL. While undoped PTAA alone shows promise, its application on the rough surface of PET-ITO substrates is insufficient to fully replace PEDOT:PSS, leading to reduced device performance. However, when combined with a PEDOT:PSS buffer layer, PTAA demonstrated significant improvements, achieving a power conversion efficiency (PCE) of 15.2% compared to 12.6% with PTAA alone using R2R deposition. To better understand the coating characteristics and interactions of these materials, we conducted a detailed analysis of the surface topography of PET-ITO and the HTL layer using X-ray photoelectron spectroscopy (XPS) mapping. This study provides critical insights into the synergistic effects of PEDOT:PSS and PTAA, highlighting their combined potential for enhancing the efficiency of R2R-fabricated PSCs. Journal Article Journal of Materials Chemistry A 13 20 14957 14963 Royal Society of Chemistry (RSC) 2050-7488 2050-7496 20 3 2025 2025-03-20 10.1039/d4ta06606e COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University SU Library paid the OA fee (TA Institutional Deal) This work was supported by the VIPERLAB project, funded by the European Union's Horizon 2020 research and innovation programme under grant agreement no. 101006715, the ATIP (Application Targeted and Integrated Photovoltaics) project under grant agreement EP/T028513/1, the EPSRC Prosperity Partnership [EP/X025217/1], and the Advanced Imaging of Materials (AIM) facility at Swansea University. 2025-06-18T14:57:09.1127776 2025-05-02T15:05:31.1811355 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Rahul Patidar 1 James McGettrick 0000-0002-7719-2958 2 Rodrigo Garcia Rodriguez 3 Christian Griffiths 4 Kathryn Lacey 5 Ershad Parvazian 6 David Beynon 0000-0002-8189-9489 7 Matthew Davies 0000-0003-2595-5121 8 Trystan Watson 0000-0002-8015-1436 9 69410__34173__1fde6badbb0c413aa5d0c22e8703bd8d.pdf 69410.VoR.pdf 2025-05-02T15:15:49.2155096 Output 803046 application/pdf Version of Record true This article is licensed under the terms of a Creative Commons Attribution 3.0 Unported License. true eng http://creativecommons.org/licenses/by/3.0/
title Roll-to-roll slot-die coating of PTAA with PEDOT:PSS buffer layer for perovskite solar cells: coating analysis by XPS mapping
spellingShingle Roll-to-roll slot-die coating of PTAA with PEDOT:PSS buffer layer for perovskite solar cells: coating analysis by XPS mapping
Rahul Patidar
James McGettrick
Rodrigo Garcia Rodriguez
Christian Griffiths
Kathryn Lacey
Ershad Parvazian
David Beynon
Matthew Davies
Trystan Watson
title_short Roll-to-roll slot-die coating of PTAA with PEDOT:PSS buffer layer for perovskite solar cells: coating analysis by XPS mapping
title_full Roll-to-roll slot-die coating of PTAA with PEDOT:PSS buffer layer for perovskite solar cells: coating analysis by XPS mapping
title_fullStr Roll-to-roll slot-die coating of PTAA with PEDOT:PSS buffer layer for perovskite solar cells: coating analysis by XPS mapping
title_full_unstemmed Roll-to-roll slot-die coating of PTAA with PEDOT:PSS buffer layer for perovskite solar cells: coating analysis by XPS mapping
title_sort Roll-to-roll slot-die coating of PTAA with PEDOT:PSS buffer layer for perovskite solar cells: coating analysis by XPS mapping
author_id_str_mv aa7f3b2aa6daa1c80cad60a4dd59055b
bdbacc591e2de05180e0fd3cc13fa480
fb0f6e1eeb02aedee895b457faa35445
84c202c256a2950fbc52314df6ec4914
a482d8085289c43024bb5ccaa5bfde3d
59dc6f18dde94e2a5fb2edd858270ec3
f5cf40043658d0b8a747ef6224019939
4ad478e342120ca3434657eb13527636
a210327b52472cfe8df9b8108d661457
author_id_fullname_str_mv aa7f3b2aa6daa1c80cad60a4dd59055b_***_Rahul Patidar
bdbacc591e2de05180e0fd3cc13fa480_***_James McGettrick
fb0f6e1eeb02aedee895b457faa35445_***_Rodrigo Garcia Rodriguez
84c202c256a2950fbc52314df6ec4914_***_Christian Griffiths
a482d8085289c43024bb5ccaa5bfde3d_***_Kathryn Lacey
59dc6f18dde94e2a5fb2edd858270ec3_***_Ershad Parvazian
f5cf40043658d0b8a747ef6224019939_***_David Beynon
4ad478e342120ca3434657eb13527636_***_Matthew Davies
a210327b52472cfe8df9b8108d661457_***_Trystan Watson
author Rahul Patidar
James McGettrick
Rodrigo Garcia Rodriguez
Christian Griffiths
Kathryn Lacey
Ershad Parvazian
David Beynon
Matthew Davies
Trystan Watson
author2 Rahul Patidar
James McGettrick
Rodrigo Garcia Rodriguez
Christian Griffiths
Kathryn Lacey
Ershad Parvazian
David Beynon
Matthew Davies
Trystan Watson
format Journal article
container_title Journal of Materials Chemistry A
container_volume 13
container_issue 20
container_start_page 14957
publishDate 2025
institution Swansea University
issn 2050-7488
2050-7496
doi_str_mv 10.1039/d4ta06606e
publisher Royal Society of Chemistry (RSC)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
document_store_str 1
active_str 0
description Roll-to-Roll (R2R) deposition offers a promising route for scaling up the production of perovskite solar cells (PSCs); however, the performance of R2R-fabricated devices still lags behind those produced through laboratory-scale methods. One significant factor contributing to this performance gap, particularly in P–I–N structured devices, is the use of suboptimal hole transport layers (HTLs), such as poly(3,4-ethylenedioxythiophene)–polystyrenesulfonate (PEDOT:PSS). In this study, we explore the potential of replacing PEDOT:PSS with poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), a more efficient and stable HTL. While undoped PTAA alone shows promise, its application on the rough surface of PET-ITO substrates is insufficient to fully replace PEDOT:PSS, leading to reduced device performance. However, when combined with a PEDOT:PSS buffer layer, PTAA demonstrated significant improvements, achieving a power conversion efficiency (PCE) of 15.2% compared to 12.6% with PTAA alone using R2R deposition. To better understand the coating characteristics and interactions of these materials, we conducted a detailed analysis of the surface topography of PET-ITO and the HTL layer using X-ray photoelectron spectroscopy (XPS) mapping. This study provides critical insights into the synergistic effects of PEDOT:PSS and PTAA, highlighting their combined potential for enhancing the efficiency of R2R-fabricated PSCs.
published_date 2025-03-20T05:22:17Z
_version_ 1851731672712609792
score 11.090464