No Cover Image

Conference Paper/Proceeding/Abstract 393 views 63 downloads

Maximizing Sample Utilization in CKD Classification: Fusion and Alignment of Locally Trained Models with a Global Model

Ali Guran, Avishek Siris, Gary Tam Orcid Logo, James Chess, Xianghua Xie Orcid Logo

2025 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Pages: 1 - 7

Swansea University Authors: Ali Guran, Avishek Siris, Gary Tam Orcid Logo, Xianghua Xie Orcid Logo

  • embc_2025.pdf

    PDF | Accepted Manuscript

    Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).

    Download (163.74KB)
Published in: 2025 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
ISBN: 979-8-3315-8619-5 979-8-3315-8618-8
ISSN: 2375-7477 2694-0604
Published: IEEE 2025
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa69419
first_indexed 2025-05-03T12:35:42Z
last_indexed 2025-12-05T17:55:26Z
id cronfa69419
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-12-04T14:38:14.7777730</datestamp><bib-version>v2</bib-version><id>69419</id><entry>2025-05-03</entry><title>Maximizing Sample Utilization in CKD Classification: Fusion and Alignment of Locally Trained Models with a Global Model</title><swanseaauthors><author><sid>dbd9ce8727a04dc1a8b409cea27f7eea</sid><firstname>Ali</firstname><surname>Guran</surname><name>Ali Guran</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>896b738a2b485a166c052d94bca5fa68</sid><firstname>Avishek</firstname><surname>Siris</surname><name>Avishek Siris</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e75a68e11a20e5f1da94ee6e28ff5e76</sid><ORCID>0000-0001-7387-5180</ORCID><firstname>Gary</firstname><surname>Tam</surname><name>Gary Tam</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-05-03</date><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>2025 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</journal><volume/><journalNumber/><paginationStart>1</paginationStart><paginationEnd>7</paginationEnd><publisher>IEEE</publisher><placeOfPublication/><isbnPrint>979-8-3315-8619-5</isbnPrint><isbnElectronic>979-8-3315-8618-8</isbnElectronic><issnPrint>2375-7477</issnPrint><issnElectronic>2694-0604</issnElectronic><keywords>Accuracy, Limiting, Soft sensors, Medical services, Feature extraction, Chronic kidney disease, Data models, Imputation, Faces, Blood</keywords><publishedDay>3</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-12-03</publishedDate><doi>10.1109/embc58623.2025.11253104</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>Ali Guran received funding from the Turkish Ministry of National Education (Republic of T&#xFC;rkiye) through the Postgraduate Study Abroad Program. Gary Tam was sup-ported by the International Mobility Award [62] and the Collaboration and Knowledge Exchange Support [92S], both provided by the CHERISH-DE Centre (EP/M022722/1). This work is partly supported by the EPSRC National Edge AI Hub (EP/Y007697/1). This project also benefited in part from a fee waiver fund provided by SAIL.</funders><projectreference>International Mobility Award [62] and Collaboration and Knowledge Exchange Support [92S] (EP/M022722/1), (EP/Y007697/1).</projectreference><lastEdited>2025-12-04T14:38:14.7777730</lastEdited><Created>2025-05-03T13:28:15.5498674</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Ali</firstname><surname>Guran</surname><order>1</order></author><author><firstname>Avishek</firstname><surname>Siris</surname><order>2</order></author><author><firstname>Gary</firstname><surname>Tam</surname><orcid>0000-0001-7387-5180</orcid><order>3</order></author><author><firstname>James</firstname><surname>Chess</surname><order>4</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>5</order></author></authors><documents><document><filename>69419__34183__736a7f98cbaa48e892a31281832227ae.pdf</filename><originalFilename>embc_2025.pdf</originalFilename><uploaded>2025-05-03T13:35:19.1359037</uploaded><type>Output</type><contentLength>167668</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/deed.en</licence></document></documents><OutputDurs/></rfc1807>
spelling 2025-12-04T14:38:14.7777730 v2 69419 2025-05-03 Maximizing Sample Utilization in CKD Classification: Fusion and Alignment of Locally Trained Models with a Global Model dbd9ce8727a04dc1a8b409cea27f7eea Ali Guran Ali Guran true false 896b738a2b485a166c052d94bca5fa68 Avishek Siris Avishek Siris true false e75a68e11a20e5f1da94ee6e28ff5e76 0000-0001-7387-5180 Gary Tam Gary Tam true false b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 2025-05-03 Conference Paper/Proceeding/Abstract 2025 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 1 7 IEEE 979-8-3315-8619-5 979-8-3315-8618-8 2375-7477 2694-0604 Accuracy, Limiting, Soft sensors, Medical services, Feature extraction, Chronic kidney disease, Data models, Imputation, Faces, Blood 3 12 2025 2025-12-03 10.1109/embc58623.2025.11253104 COLLEGE NANME COLLEGE CODE Swansea University Not Required Ali Guran received funding from the Turkish Ministry of National Education (Republic of Türkiye) through the Postgraduate Study Abroad Program. Gary Tam was sup-ported by the International Mobility Award [62] and the Collaboration and Knowledge Exchange Support [92S], both provided by the CHERISH-DE Centre (EP/M022722/1). This work is partly supported by the EPSRC National Edge AI Hub (EP/Y007697/1). This project also benefited in part from a fee waiver fund provided by SAIL. International Mobility Award [62] and Collaboration and Knowledge Exchange Support [92S] (EP/M022722/1), (EP/Y007697/1). 2025-12-04T14:38:14.7777730 2025-05-03T13:28:15.5498674 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Ali Guran 1 Avishek Siris 2 Gary Tam 0000-0001-7387-5180 3 James Chess 4 Xianghua Xie 0000-0002-2701-8660 5 69419__34183__736a7f98cbaa48e892a31281832227ae.pdf embc_2025.pdf 2025-05-03T13:35:19.1359037 Output 167668 application/pdf Accepted Manuscript true Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention). true eng https://creativecommons.org/licenses/by/4.0/deed.en
title Maximizing Sample Utilization in CKD Classification: Fusion and Alignment of Locally Trained Models with a Global Model
spellingShingle Maximizing Sample Utilization in CKD Classification: Fusion and Alignment of Locally Trained Models with a Global Model
Ali Guran
Avishek Siris
Gary Tam
Xianghua Xie
title_short Maximizing Sample Utilization in CKD Classification: Fusion and Alignment of Locally Trained Models with a Global Model
title_full Maximizing Sample Utilization in CKD Classification: Fusion and Alignment of Locally Trained Models with a Global Model
title_fullStr Maximizing Sample Utilization in CKD Classification: Fusion and Alignment of Locally Trained Models with a Global Model
title_full_unstemmed Maximizing Sample Utilization in CKD Classification: Fusion and Alignment of Locally Trained Models with a Global Model
title_sort Maximizing Sample Utilization in CKD Classification: Fusion and Alignment of Locally Trained Models with a Global Model
author_id_str_mv dbd9ce8727a04dc1a8b409cea27f7eea
896b738a2b485a166c052d94bca5fa68
e75a68e11a20e5f1da94ee6e28ff5e76
b334d40963c7a2f435f06d2c26c74e11
author_id_fullname_str_mv dbd9ce8727a04dc1a8b409cea27f7eea_***_Ali Guran
896b738a2b485a166c052d94bca5fa68_***_Avishek Siris
e75a68e11a20e5f1da94ee6e28ff5e76_***_Gary Tam
b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie
author Ali Guran
Avishek Siris
Gary Tam
Xianghua Xie
author2 Ali Guran
Avishek Siris
Gary Tam
James Chess
Xianghua Xie
format Conference Paper/Proceeding/Abstract
container_title 2025 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
container_start_page 1
publishDate 2025
institution Swansea University
isbn 979-8-3315-8619-5
979-8-3315-8618-8
issn 2375-7477
2694-0604
doi_str_mv 10.1109/embc58623.2025.11253104
publisher IEEE
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
document_store_str 1
active_str 0
published_date 2025-12-03T17:55:26Z
_version_ 1850691894050291712
score 11.08899