Conference Paper/Proceeding/Abstract 302 views 92 downloads
Pretraining Techniques for Ra Prediction with Long Thin Spatial Industrial Data
ACIVS 2025 / LNCS
Swansea University Authors:
ALEXANDER MILNE, Xianghua Xie , Gary Tam
-
PDF | Accepted Manuscript
Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).
Download (1.32MB)
Abstract
Pretraining Techniques for Ra Prediction with Long Thin Spatial Industrial Data
| Published in: | ACIVS 2025 / LNCS |
|---|---|
| Published: |
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa69563 |
| first_indexed |
2025-05-23T12:21:22Z |
|---|---|
| last_indexed |
2025-12-05T17:57:22Z |
| id |
cronfa69563 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-12-04T14:45:10.2686246</datestamp><bib-version>v2</bib-version><id>69563</id><entry>2025-05-23</entry><title>Pretraining Techniques for Ra Prediction with Long Thin Spatial Industrial Data</title><swanseaauthors><author><sid>c6da9da5c99754b6850e882895b86ca5</sid><firstname>ALEXANDER</firstname><surname>MILNE</surname><name>ALEXANDER MILNE</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e75a68e11a20e5f1da94ee6e28ff5e76</sid><ORCID>0000-0001-7387-5180</ORCID><firstname>Gary</firstname><surname>Tam</surname><name>Gary Tam</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-05-23</date><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>ACIVS 2025 / LNCS</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords/><publishedDay>0</publishedDay><publishedMonth>0</publishedMonth><publishedYear>0</publishedYear><publishedDate>0001-01-01</publishedDate><doi/><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>This work was funded by EPSRC Industrial Case award (EP/V519601/1). For the purpose of open access the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission.</funders><projectreference/><lastEdited>2025-12-04T14:45:10.2686246</lastEdited><Created>2025-05-23T13:18:00.5793451</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>ALEXANDER</firstname><surname>MILNE</surname><order>1</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>2</order></author><author><firstname>Gary</firstname><surname>Tam</surname><orcid>0000-0001-7387-5180</orcid><order>3</order></author></authors><documents><document><filename>69563__34344__7ad48e9ce5d34eb680ea5d9a9f3adbbd.pdf</filename><originalFilename>case_study_pretraining_tata_data_acivs2025.pdf</originalFilename><uploaded>2025-05-23T13:20:58.5179403</uploaded><type>Output</type><contentLength>1384616</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/deed.en</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2025-12-04T14:45:10.2686246 v2 69563 2025-05-23 Pretraining Techniques for Ra Prediction with Long Thin Spatial Industrial Data c6da9da5c99754b6850e882895b86ca5 ALEXANDER MILNE ALEXANDER MILNE true false b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false e75a68e11a20e5f1da94ee6e28ff5e76 0000-0001-7387-5180 Gary Tam Gary Tam true false 2025-05-23 Conference Paper/Proceeding/Abstract ACIVS 2025 / LNCS 0 0 0 0001-01-01 COLLEGE NANME COLLEGE CODE Swansea University Not Required This work was funded by EPSRC Industrial Case award (EP/V519601/1). For the purpose of open access the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission. 2025-12-04T14:45:10.2686246 2025-05-23T13:18:00.5793451 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science ALEXANDER MILNE 1 Xianghua Xie 0000-0002-2701-8660 2 Gary Tam 0000-0001-7387-5180 3 69563__34344__7ad48e9ce5d34eb680ea5d9a9f3adbbd.pdf case_study_pretraining_tata_data_acivs2025.pdf 2025-05-23T13:20:58.5179403 Output 1384616 application/pdf Accepted Manuscript true Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention). true eng https://creativecommons.org/licenses/by/4.0/deed.en |
| title |
Pretraining Techniques for Ra Prediction with Long Thin Spatial Industrial Data |
| spellingShingle |
Pretraining Techniques for Ra Prediction with Long Thin Spatial Industrial Data ALEXANDER MILNE Xianghua Xie Gary Tam |
| title_short |
Pretraining Techniques for Ra Prediction with Long Thin Spatial Industrial Data |
| title_full |
Pretraining Techniques for Ra Prediction with Long Thin Spatial Industrial Data |
| title_fullStr |
Pretraining Techniques for Ra Prediction with Long Thin Spatial Industrial Data |
| title_full_unstemmed |
Pretraining Techniques for Ra Prediction with Long Thin Spatial Industrial Data |
| title_sort |
Pretraining Techniques for Ra Prediction with Long Thin Spatial Industrial Data |
| author_id_str_mv |
c6da9da5c99754b6850e882895b86ca5 b334d40963c7a2f435f06d2c26c74e11 e75a68e11a20e5f1da94ee6e28ff5e76 |
| author_id_fullname_str_mv |
c6da9da5c99754b6850e882895b86ca5_***_ALEXANDER MILNE b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie e75a68e11a20e5f1da94ee6e28ff5e76_***_Gary Tam |
| author |
ALEXANDER MILNE Xianghua Xie Gary Tam |
| author2 |
ALEXANDER MILNE Xianghua Xie Gary Tam |
| format |
Conference Paper/Proceeding/Abstract |
| container_title |
ACIVS 2025 / LNCS |
| institution |
Swansea University |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
| document_store_str |
1 |
| active_str |
0 |
| published_date |
0001-01-01T17:57:22Z |
| _version_ |
1850692015584444416 |
| score |
11.08899 |

